Abstract

The radiation and dynamic properties of C VI, C V, Si VI and Si V ions from laser-produced SiC plasmas in a vacuum are studied both experimentally and theoretically. The EUV emission spectra of SiC plasmas are measured using the spatio-temporally resolved laser-produced plasma spectroscopy technique. To explore the dynamic evolution of highly-charged ions in such plasmas, an extended radiation hydrodynamics model is developed. The comparison of theoretical and experimental time-space evolved spectral profiles provides the temporal evolution of plasma temperature and electron density, the distribution of various transient ions and their velocities. The results show that the present radiation hydrodynamics model for a multi-element target reflects the dynamic evolution processes of their laser-produced plasmas, which make it an effective tool for plasma diagnostics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma

Qi Min, Maogen Su, Shiquan Cao, Duixiong Sun, Gerry O’Sullivan, and Chenzhong Dong
Opt. Lett. 41(22) 5282-5285 (2016)

Emission analysis of a laser-produced barium plasma plume

R. K. Singh, H. C. Joshi, and Ajai Kumar
Appl. Opt. 54(25) 7673-7678 (2015)

Radiative model of post-breakdown laser-induced plasma expanding into ambient gas

A. Ya. Kazakov, I. B. Gornushkin, N. Omenetto, B. W. Smith, and J. D. Winefordner
Appl. Opt. 45(12) 2810-2820 (2006)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Carroll and E. T. Kennedy, “Laser-produced plasmas,” Contemp. Phys. 22(1), 61–96 (1981).
    [Crossref]
  2. R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82(5), 2123–2139 (1997).
    [Crossref]
  3. N. J. Peacock and R. S. Pease, “Sources of highly stripped ions,” J. Phys. D 2(12), 1705–1716 (1969).
    [Crossref]
  4. V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D 44(25), 253001 (2011).
    [Crossref]
  5. B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
    [Crossref]
  6. F. Barkusky, A. Bayer, S. Döring, P. Grossmann, and K. Mann, “Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source,” Opt. Express 18(5), 4346–4355 (2010).
    [Crossref] [PubMed]
  7. G. McDermott, M. A. Le Gros, and C. A. Larabell, “Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy,” Annu. Rev. Phys. Chem. 63(1), 225–239 (2012).
    [Crossref] [PubMed]
  8. B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
    [Crossref]
  9. S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
    [Crossref]
  10. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
    [Crossref]
  11. C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
    [Crossref]
  12. T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
    [Crossref]
  13. T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
    [Crossref]
  14. T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
    [Crossref]
  15. P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta B At. Spectrosc. 62(12), 1466–1474 (2007).
    [Crossref]
  16. T. L. Thiem, R. H. Salter, J. A. Gardner, Y. I. Lee, and J. Sneddon, “Quantitative Simultaneous Elemental Determinations in Alloys Using Laser-Induced Breakdown Spectroscopy (LIBS) in an Ultra-High Vacuum,” Appl. Spectrosc. 48(1), 58–64 (1994).
    [Crossref]
  17. L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42(30), 6199–6204 (2003).
    [Crossref] [PubMed]
  18. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  19. K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
    [Crossref] [PubMed]
  20. S. S. Harilal, M. S. Tillack, Y. Tao, B. O’Shay, R. Paguio, and A. Nikroo, “Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets,” Opt. Lett. 31(10), 1549–1551 (2006).
    [Crossref] [PubMed]
  21. S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
    [Crossref]
  22. J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
    [Crossref] [PubMed]
  23. S. S. Harilal, N. L. Lahaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
    [Crossref]
  24. M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
    [Crossref]
  25. A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
    [Crossref]
  26. J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
    [Crossref]
  27. A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
    [Crossref]
  28. K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
    [Crossref]
  29. J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
    [Crossref]
  30. Q. Min, M. Su, S. Cao, D. Sun, G. O’Sullivan, and C. Dong, “Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma,” Opt. Lett. 41(22), 5282–5285 (2016).
    [Crossref] [PubMed]
  31. M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
    [Crossref] [PubMed]
  32. Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, 1966).
  33. S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
    [Crossref]
  34. A. Kramida, Y. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (Ver. 5.3), http://physics.nist.gov/asd .
  35. M. V. Mathew, S. S. Harilal, and M. S. Tillack, “Emission characteristics and dynamics of neutral species in a laser-produced tin plasma,” J. Phys. D 40(2), 447–452 (2007).
    [Crossref]
  36. D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
    [Crossref]
  37. L. Torrisi and D. Margarone, “Investigations on pulsed laser ablation of Sn at 1064nm wavelength,” Plasma Sources Sci. Technol. 15(4), 635–641 (2006).
    [Crossref]
  38. N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
    [Crossref]
  39. R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
    [Crossref]
  40. J. I. Apiñaniz, F. J. Gordillo-Vázquez, and R. Martínez, “Ion energy distributions in laser produced plasmas with two collinear pulses,” Plasma Sources Sci. Technol. 21(1), 015016 (2012).
    [Crossref]
  41. S. Anisimov, B. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci. 96, 24–32 (1996).
    [Crossref]

2017 (3)

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

S. S. Harilal, N. L. Lahaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref]

2016 (1)

2014 (1)

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

2013 (1)

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
[Crossref]

2012 (6)

J. I. Apiñaniz, F. J. Gordillo-Vázquez, and R. Martínez, “Ion energy distributions in laser produced plasmas with two collinear pulses,” Plasma Sources Sci. Technol. 21(1), 015016 (2012).
[Crossref]

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

G. McDermott, M. A. Le Gros, and C. A. Larabell, “Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy,” Annu. Rev. Phys. Chem. 63(1), 225–239 (2012).
[Crossref] [PubMed]

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

2011 (1)

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D 44(25), 253001 (2011).
[Crossref]

2010 (3)

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
[Crossref]

F. Barkusky, A. Bayer, S. Döring, P. Grossmann, and K. Mann, “Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source,” Opt. Express 18(5), 4346–4355 (2010).
[Crossref] [PubMed]

2009 (1)

A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
[Crossref]

2008 (1)

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

2007 (3)

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta B At. Spectrosc. 62(12), 1466–1474 (2007).
[Crossref]

S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
[Crossref]

M. V. Mathew, S. S. Harilal, and M. S. Tillack, “Emission characteristics and dynamics of neutral species in a laser-produced tin plasma,” J. Phys. D 40(2), 447–452 (2007).
[Crossref]

2006 (4)

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

S. S. Harilal, M. S. Tillack, Y. Tao, B. O’Shay, R. Paguio, and A. Nikroo, “Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets,” Opt. Lett. 31(10), 1549–1551 (2006).
[Crossref] [PubMed]

L. Torrisi and D. Margarone, “Investigations on pulsed laser ablation of Sn at 1064nm wavelength,” Plasma Sources Sci. Technol. 15(4), 635–641 (2006).
[Crossref]

2005 (1)

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

2003 (4)

A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
[Crossref]

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42(30), 6199–6204 (2003).
[Crossref] [PubMed]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

2000 (1)

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

1999 (1)

B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
[Crossref]

1997 (1)

R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82(5), 2123–2139 (1997).
[Crossref]

1996 (2)

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
[Crossref]

S. Anisimov, B. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci. 96, 24–32 (1996).
[Crossref]

1994 (1)

1981 (1)

P. K. Carroll and E. T. Kennedy, “Laser-produced plasmas,” Contemp. Phys. 22(1), 61–96 (1981).
[Crossref]

1973 (1)

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

1969 (1)

N. J. Peacock and R. S. Pease, “Sources of highly stripped ions,” J. Phys. D 2(12), 1705–1716 (1969).
[Crossref]

Ando, T.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Anisimov, S.

S. Anisimov, B. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci. 96, 24–32 (1996).
[Crossref]

Apiñaniz, J. I.

J. I. Apiñaniz, F. J. Gordillo-Vázquez, and R. Martínez, “Ion energy distributions in laser produced plasmas with two collinear pulses,” Plasma Sources Sci. Technol. 21(1), 015016 (2012).
[Crossref]

Arnett, D.

B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
[Crossref]

Azechi, H.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Banine, V. Y.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D 44(25), 253001 (2011).
[Crossref]

Barkusky, F.

Bayer, A.

Bergmann, H. W.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
[Crossref]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Bogaerts, A.

A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
[Crossref]

Campos, D.

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
[Crossref]

Cao, S.

Cao, S. Q.

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Carroll, P. K.

P. K. Carroll and E. T. Kennedy, “Laser-produced plasmas,” Contemp. Phys. 22(1), 61–96 (1981).
[Crossref]

Chen, Z. Y.

A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
[Crossref]

Colombant, D.

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

Coons, R. W.

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
[Crossref]

Ding, H.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
[Crossref]

Diwakar, P. K.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta B At. Spectrosc. 62(12), 1466–1474 (2007).
[Crossref]

Dojyo, N.

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Dong, C.

Dong, C. Z.

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Döring, S.

Drake, R. P.

B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
[Crossref]

Dunne, P.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Endo, A.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Epstein, R.

R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82(5), 2123–2139 (1997).
[Crossref]

Estabrook, K. G.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Farid, N.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
[Crossref]

Farley, D. R.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Filevich, J.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Freeman, J. R.

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

Fujima, K.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Fujioka, S.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Furukawa, H.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Gamata, K.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Gardner, J. A.

Gijbels, R.

A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
[Crossref]

Golovkin, I. E.

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

Gordillo-Vázquez, F. J.

J. I. Apiñaniz, F. J. Gordillo-Vázquez, and R. Martínez, “Ion energy distributions in laser produced plasmas with two collinear pulses,” Plasma Sources Sci. Technol. 21(1), 015016 (2012).
[Crossref]

Gornushkin, I. B.

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

Grossmann, P.

Gu, Q. C.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta B At. Spectrosc. 62(12), 1466–1474 (2007).
[Crossref]

Hamada, M.

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Hammarsten, E. C.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Harilal, S. S.

S. S. Harilal, N. L. Lahaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref]

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
[Crossref]

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
[Crossref]

M. V. Mathew, S. S. Harilal, and M. S. Tillack, “Emission characteristics and dynamics of neutral species in a laser-produced tin plasma,” J. Phys. D 40(2), 447–452 (2007).
[Crossref]

S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
[Crossref]

S. S. Harilal, M. S. Tillack, Y. Tao, B. O’Shay, R. Paguio, and A. Nikroo, “Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets,” Opt. Lett. 31(10), 1549–1551 (2006).
[Crossref] [PubMed]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Hartmann, M.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
[Crossref]

Hassanein, A.

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
[Crossref]

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
[Crossref]

Hayden, P.

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Higashiguchi, T.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Izawa, Y.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Jackson, P. B.

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta B At. Spectrosc. 62(12), 1466–1474 (2007).
[Crossref]

Jankowska, E.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Jiang, W. H.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Kanizay, K.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Kato, T.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Kennedy, E. T.

P. K. Carroll and E. T. Kennedy, “Laser-produced plasmas,” Contemp. Phys. 22(1), 61–96 (1981).
[Crossref]

Kilbane, D.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Koase, T.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Kodama, R.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Koike, F.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Körner, C.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
[Crossref]

Koshelev, K. N.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D 44(25), 253001 (2011).
[Crossref]

Kubodera, S.

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Kumar, A.

A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
[Crossref]

Lahaye, N. L.

S. S. Harilal, N. L. Lahaye, and M. C. Phillips, “High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence,” Opt. Express 25(3), 2312–2326 (2017).
[Crossref]

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

Larabell, C. A.

G. McDermott, M. A. Le Gros, and C. A. Larabell, “Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy,” Annu. Rev. Phys. Chem. 63(1), 225–239 (2012).
[Crossref] [PubMed]

Le Gros, M. A.

G. McDermott, M. A. Le Gros, and C. A. Larabell, “Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy,” Annu. Rev. Phys. Chem. 63(1), 225–239 (2012).
[Crossref] [PubMed]

Lee, Y. I.

Luches, A.

S. Anisimov, B. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci. 96, 24–32 (1996).
[Crossref]

Luk’yanchuk, B.

S. Anisimov, B. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci. 96, 24–32 (1996).
[Crossref]

MacFarlane, J. J.

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

Mann, K.

Marconi, M. C.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Margarone, D.

L. Torrisi and D. Margarone, “Investigations on pulsed laser ablation of Sn at 1064nm wavelength,” Plasma Sources Sci. Technol. 15(4), 635–641 (2006).
[Crossref]

Martínez, R.

J. I. Apiñaniz, F. J. Gordillo-Vázquez, and R. Martínez, “Ion energy distributions in laser produced plasmas with two collinear pulses,” Plasma Sources Sci. Technol. 21(1), 015016 (2012).
[Crossref]

Mathew, M. V.

M. V. Mathew, S. S. Harilal, and M. S. Tillack, “Emission characteristics and dynamics of neutral species in a laser-produced tin plasma,” J. Phys. D 40(2), 447–452 (2007).
[Crossref]

Mayerhofer, R.

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
[Crossref]

McDermott, G.

G. McDermott, M. A. Le Gros, and C. A. Larabell, “Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy,” Annu. Rev. Phys. Chem. 63(1), 225–239 (2012).
[Crossref] [PubMed]

Miloshevsky, G. V.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

Mima, K.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Min, Q.

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Q. Min, M. Su, S. Cao, D. Sun, G. O’Sullivan, and C. Dong, “Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma,” Opt. Lett. 41(22), 5282–5285 (2016).
[Crossref] [PubMed]

Miyanaga, N.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Moon, S. J.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

More, R.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Murakami, M.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Nagai, K.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Nikroo, A.

Nishihara, K.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Nishikawa, T.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Nishimura, H.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Noll, R.

Norimatsu, T.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Nunami, M.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

O’Shay, B.

O’Sullivan, G.

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Q. Min, M. Su, S. Cao, D. Sun, G. O’Sullivan, and C. Dong, “Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma,” Opt. Lett. 41(22), 5282–5285 (2016).
[Crossref] [PubMed]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Ochi, Y.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Okuno, T.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Omenetto, N.

Otsuka, T.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Paguio, R.

Peacock, N. J.

N. J. Peacock and R. S. Pease, “Sources of highly stripped ions,” J. Phys. D 2(12), 1705–1716 (1969).
[Crossref]

Pease, R. S.

N. J. Peacock and R. S. Pease, “Sources of highly stripped ions,” J. Phys. D 2(12), 1705–1716 (1969).
[Crossref]

Peter, L.

Phillips, M. C.

Remington, B. A.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
[Crossref]

Rettig, C. L.

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

Rice, B.

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

Rocca, J. J.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Ryutov, D. D.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Salter, R. H.

Sasaki, A.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Sasaki, W.

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Shabanov, S. V.

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

Shigemori, K.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Shimada, Y.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Shlyaptsev, V. N.

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Singh, R. K.

A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
[Crossref]

Sneddon, J.

Stone, J.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Sturm, V.

Su, M.

Su, M. G.

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Sun, D.

Sun, D. X.

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Sunahara, A.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Sunil, S.

A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
[Crossref]

Swinkels, G. H. P. M.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D 44(25), 253001 (2011).
[Crossref]

Takabe, H.

B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
[Crossref]

Takata, A.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Tanuma, H.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Tao, Y.

Tao, Y. Z.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Thiem, T. L.

Thomas, J.

A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
[Crossref]

Tillack, M. S.

M. V. Mathew, S. S. Harilal, and M. S. Tillack, “Emission characteristics and dynamics of neutral species in a laser-produced tin plasma,” J. Phys. D 40(2), 447–452 (2007).
[Crossref]

S. S. Harilal, M. S. Tillack, Y. Tao, B. O’Shay, R. Paguio, and A. Nikroo, “Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets,” Opt. Lett. 31(10), 1549–1551 (2006).
[Crossref] [PubMed]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Tonon, G. F.

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

Torrisi, L.

L. Torrisi and D. Margarone, “Investigations on pulsed laser ablation of Sn at 1064nm wavelength,” Plasma Sources Sci. Technol. 15(4), 635–641 (2006).
[Crossref]

Turner, N.

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Ueda, H.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Ueda, N.

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

Verhoff, B.

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

Vertes, A.

A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
[Crossref]

Wang, B.

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

Wang, P.

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

Woodruff, P. R.

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

Yatagai, T.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Yugami, N.

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Zhakhovskii, V.

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

Annu. Rev. Phys. Chem. (1)

G. McDermott, M. A. Le Gros, and C. A. Larabell, “Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy,” Annu. Rev. Phys. Chem. 63(1), 225–239 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

T. Okuno, S. Fujioka, H. Nishimura, Y. Z. Tao, K. Nagai, Q. C. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, A. Sunahara, H. Furukawa, and A. Sasaki, “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Appl. Phys. Lett. 88(16), 161501 (2006).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. H. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 230503 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys., A Mater. Sci. Process. 63(2), 123–131 (1996).
[Crossref]

Appl. Spectrosc. (2)

Appl. Surf. Sci. (1)

S. Anisimov, B. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci. 96, 24–32 (1996).
[Crossref]

Contemp. Phys. (1)

P. K. Carroll and E. T. Kennedy, “Laser-produced plasmas,” Contemp. Phys. 22(1), 61–96 (1981).
[Crossref]

J. Appl. Phys. (7)

R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82(5), 2123–2139 (1997).
[Crossref]

B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein, “Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).
[Crossref]

S. S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” J. Appl. Phys. 102(12), 123306 (2007).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108(6), 063306 (2010).
[Crossref]

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

A. Kumar, R. K. Singh, J. Thomas, and S. Sunil, “Parametric study of expanding plasma plume formed by laser-blow-off of thin film using triple Langmuir probe,” J. Appl. Phys. 106(4), 043306 (2009).
[Crossref]

J. Phys. D (3)

M. V. Mathew, S. S. Harilal, and M. S. Tillack, “Emission characteristics and dynamics of neutral species in a laser-produced tin plasma,” J. Phys. D 40(2), 447–452 (2007).
[Crossref]

N. J. Peacock and R. S. Pease, “Sources of highly stripped ions,” J. Phys. D 2(12), 1705–1716 (1969).
[Crossref]

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D 44(25), 253001 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Plasmas (4)

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shimada, K. Fujima, H. Furukawa, T. Kato, F. Koike, R. More, M. Murakami, T. Nishikawa, V. Zhakhovskii, K. Gamata, A. Takata, H. Ueda, H. Nishimura, Y. Izawa, N. Miyanaga, and K. Mima, “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,” Phys. Plasmas 15(5), 056708 (2008).
[Crossref]

M. G. Su, B. Wang, Q. Min, S. Q. Cao, D. X. Sun, and C. Z. Dong, “Time evolution analysis of dynamics processes in laser-produced Al plasmas based on a collisional radiative model,” Phys. Plasmas 24(1), 013302 (2017).
[Crossref]

N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Kinetics of ion and prompt electron emission from laser-produced plasma,” Phys. Plasmas 20(7), 073114 (2013).
[Crossref]

Phys. Rev. E (1)

J. Filevich, J. J. Rocca, E. Jankowska, E. C. Hammarsten, K. Kanizay, M. C. Marconi, S. J. Moon, and V. N. Shlyaptsev, “Two-dimensional effects in laser-created plasmas measured with soft-x-ray laser interferometry,” Phys. Rev. E 67(5), 056409 (2003).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8838–8841 (2000).
[Crossref] [PubMed]

Plasma Sources Sci. Technol. (3)

J. R. Freeman, S. S. Harilal, B. Verhoff, A. Hassanein, and B. Rice, “Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas,” Plasma Sources Sci. Technol. 21(5), 055003 (2012).
[Crossref]

J. I. Apiñaniz, F. J. Gordillo-Vázquez, and R. Martínez, “Ion energy distributions in laser produced plasmas with two collinear pulses,” Plasma Sources Sci. Technol. 21(1), 015016 (2012).
[Crossref]

L. Torrisi and D. Margarone, “Investigations on pulsed laser ablation of Sn at 1064nm wavelength,” Plasma Sources Sci. Technol. 15(4), 635–641 (2006).
[Crossref]

Proc. SPIE (1)

J. J. MacFarlane, C. L. Rettig, P. Wang, I. E. Golovkin, and P. R. Woodruff, “Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources,” Proc. SPIE 5751, 588–600 (2005).
[Crossref]

Sci. Rep. (1)

M. G. Su, Q. Min, S. Q. Cao, D. X. Sun, P. Hayden, G. O’Sullivan, and C. Z. Dong, “Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model,” Sci. Rep. 7, 45212 (2017).
[Crossref] [PubMed]

Science (1)

B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers,” Science 284(5419), 1488–1493 (1999).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (3)

S. V. Shabanov and I. B. Gornushkin, “Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 100, 147–172 (2014).
[Crossref]

P. K. Diwakar, P. B. Jackson, and D. W. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta B At. Spectrosc. 62(12), 1466–1474 (2007).
[Crossref]

A. Bogaerts, Z. Y. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B At. Spectrosc. 58(11), 1867–1893 (2003).
[Crossref]

Other (2)

A. Kramida, Y. Ralchenko, and J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (Ver. 5.3), http://physics.nist.gov/asd .

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, 1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Typical EUV emission spectra of the SiC plasma for different delay time at a distance of 1.5 mm from the target surface.
Fig. 2
Fig. 2 Normalized temporal evolution profiles of C VI ions at 3.37 nm, C V ions at 4.03 nm, Si VI ions at 9.95 nm and Si V ions at 11.79 nm obtained from spectral data are given for distances of (a) 1.5 mm and (b) 2.5 mm from the SiC target surface. The open shapes in the plot represent the experimental data and the solid curves represent the best fit. The intensity profiles are normalized with the maximum experimental intensity.
Fig. 3
Fig. 3 Normalized temporal evolution profiles of (a) C VI, C V, and (b) Si VI, Si V ions obtained from spectral data are given for a distance of 1.5 mm from the SiC, pure C and pure Si target surfaces. The open shapes represent the experimental data and the solid curves represent the best fit.
Fig. 4
Fig. 4 Normalized temporal evolution profiles of C VI, C V, Si VI and Si V ions obtained from experimental and theoretical spectral data are given for (a) 1.5 mm and (b) 2.5 mm from the SiC target surface. The solid curves and dash curves represent the best fit.
Fig. 5
Fig. 5 Temporal behavior of the plasma temperature and electron density of SiC plasma at the distances of (a) 1.5mm and (b) 2.5mm from the target surface.
Fig. 6
Fig. 6 Temporal behavior of the (a) collisional ionization and (b) three-body recombination rate coefficient of SiC plasma at the distances of 1.5 mm and 2.5 mm from the target surface.
Fig. 7
Fig. 7 R-T plots of the peak emission intensity of C VI, C V, Si VI and Si V ions from (a) experimental data in SiC plasmas, (b) theoretical data in SiC plasmas and (c) experimental data in pure C and Si plasmas.
Fig. 8
Fig. 8 The distribution of C VI, C V, Si VI and Si V ions in the SiC plasma at (a) 40 ns, and (b) 60 ns delay times.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ t + ( ρ u )=0
ρ u t +ρ( u ) u = p
ρ t ( ε+ u 2 2 )= [ u ( ρε+p+ ρ u 2 2 ) ] q
Ω I ν + κ ν I ν = κ ν I ν b
n j i+1 n e n j i =2 ( 2πmkT h 2 ) 3/2 U j i+1 U j i exp( ( φ i+1 Δ φ i+1 )/ T e )
i=0 Z n j i = n j
j=1 x i=0 Z n j i =n
j=1 x i=0 Z in j i = n e
S= 9× 10 6 ξ z ( T e χ z ) 1/2 χ z 3/2 ( 4.88+ T e χ z ) exp( χ z T e )
A3b=2.97× 10 27 n e ξ z / T e χ z 2 ( 4.88+ T e χ z )

Metrics