Abstract

We developed an ink-jet printing method for fabricating inorganic microdisks at room temperature, which is much lower than the melting point of solid-state inorganic oxide, and have fabricated an organic-inorganic hybrid microdisk laser. Silica was used as the inorganic disk material, and microdisk-shaped aggregates were formed by the ink-jet printing method using a solution in which nanosilica particles were dispersed in propylene glycol monomethylether (PGME) solvent. Then, a microdisk capable of laser oscillation was also prepared by preliminarily adding the laser dye rhodamine 6G to the ink to form a mixed organic material. The structural evaluation of the printed microdisk was first conducted using an optical microscope, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The results of laser oscillation evaluation by optical excitation showed that the printed microdisk sufficiently functions as an optical resonator with a low optical loss. In these evaluations, excellent values such as a surface roughness of 5.83 nm from root mean square (R. M. S.) which is one forth smaller than the particle diameter, and a laser oscillation threshold of 4.76 µJ/mm2 at a wavelength of 601.4 nm were obtained. To the best of our knowledge, this is the first time that an inorganic microdisk has been fabricated at room temperature to realize an organic-inorganic hybrid microdisk laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers

Cong Chen, Lei Wan, Hengky Chandrahalim, Jian Zhou, Hui Zhang, Sangha Cho, Ting Mei, Hiroaki Yoshioka, Huiping Tian, Naoya Nishimura, Xudong Fan, L. Jay Guo, and Yuji Oki
Opt. Express 26(1) 233-241 (2018)

Optical resonators with ten million finesse

Anatoliy A. Savchenkov, Andrey B. Matsko, Vladimir S. Ilchenko, and Lute Maleki
Opt. Express 15(11) 6768-6773 (2007)

Quasi-single mode laser output from a terrace structure added on a Nd3+-doped tellurite-glass microsphere prepared using localized laser heating

Tetsuo Kishi, Tsutaru Kumagai, Shogo Shibuya, Francesco Prudenzano, Tetsuji Yano, and Shuichi Shibata
Opt. Express 23(16) 20629-20635 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S.-L. Qiu and Y.-P. Li, “Q-factor instability and its explanation in the staircased FDTD simulation of high-Q circular cavity,” J. Opt. Soc. Am. B 26(9), 1664–1674 (2009).
    [Crossref]
  2. E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
    [Crossref] [PubMed]
  3. A. Tulek, D. Akbulut, and M. Bayindir, “Ultralow threshold laser action from toroidal polymer microcavity,” Appl. Phys. Lett. 94(20), 203302 (2009).
    [Crossref]
  4. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
    [Crossref]
  5. H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
    [Crossref]
  6. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  7. G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
    [Crossref]
  8. G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
    [Crossref]
  9. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
    [Crossref]
  10. A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
    [Crossref]
  11. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
    [Crossref]
  12. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express 17(25), 23265–23271 (2009).
    [Crossref]
  13. F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
    [Crossref]
  14. A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
    [Crossref]
  15. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
    [Crossref]
  16. H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.
  17. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
    [Crossref] [PubMed]
  18. N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
    [Crossref] [PubMed]
  19. Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
    [Crossref]
  20. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  21. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
    [Crossref]
  22. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese patent, 10-101333 (1998).
  23. M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).
  24. M. Sekita, H. Haneda, and S. Shrasaki, “Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991).
    [Crossref]

2018 (2)

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

2017 (1)

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

2016 (1)

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

2015 (2)

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

2013 (1)

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
[Crossref]

2010 (3)

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2004 (2)

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
[Crossref]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

1997 (1)

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

1991 (1)

M. Sekita, H. Haneda, and S. Shrasaki, “Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991).
[Crossref]

1990 (1)

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).

Akbulut, D.

A. Tulek, D. Akbulut, and M. Bayindir, “Ultralow threshold laser action from toroidal polymer microcavity,” Appl. Phys. Lett. 94(20), 203302 (2009).
[Crossref]

Aktas, O.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

Bayindir, M.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

A. Tulek, D. Akbulut, and M. Bayindir, “Ultralow threshold laser action from toroidal polymer microcavity,” Appl. Phys. Lett. 94(20), 203302 (2009).
[Crossref]

Beck, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Blom, F. C.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

Bolivar, P. H.

Cai, C.

Chen, C.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Christiansen, M. B.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Driessen, A.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

Duan, Z.

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Dulashko, Y.

Eschenbaum, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Fuchs, J.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Fürst, J. U.

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
[Crossref]

Gohn-Kreuz, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Grossmann, T.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Haneda, H.

M. Sekita, H. Haneda, and S. Shrasaki, “Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991).
[Crossref]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).

Hauser, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Henschel, W.

Hoekstra, H. J. W. M.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Hsu, H.-S.

Huang, C.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Huseyinoglu, E.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

Ichikawa, M.

T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese patent, 10-101333 (1998).

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Jiang, X.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Juarez, J. L. D.

G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Kalkman, J.

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

Kalt, H.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Karl, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Klinkhammer, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Kozyreff, G.

G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Kristensen, A.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Kurz, H.

Lemmer, U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Leuchs, G.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Li, G.

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Li, J.

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Li, Y.-P.

Lin, G.

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
[Crossref]

Liu, S.

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Mahalingam, H.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Maleki, L.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Mappes, T.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Marquardt, C.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Martorell, J.

G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Matsko, A. B.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Matsuko, A. B.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Min, B.

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

Niehusmann, J.

Nienhaus, G. U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Oki, Y.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Ota, T.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

Ozawa, M.

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Ozgur, E.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

Poleman, A.

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

Popma, Th. J. A.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

Qiu, S.-L.

Ryu, S.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Savchenkov, A. A.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Schleede, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schwefel, H. G. L.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

Sekita, M.

M. Sekita, H. Haneda, and S. Shrasaki, “Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991).
[Crossref]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).

Shirasaki, S.

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).

Shrasaki, S.

M. Sekita, H. Haneda, and S. Shrasaki, “Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991).
[Crossref]

Song, Q.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Steier, W. H.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Strekalov, D. V.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
[Crossref]

Sumetsky, M.

Sun, W.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Takahashi, S.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

Toren, P.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

Tulek, A.

A. Tulek, D. Akbulut, and M. Bayindir, “Ultralow threshold laser action from toroidal polymer microcavity,” Appl. Phys. Lett. 94(20), 203302 (2009).
[Crossref]

Vahala, K. J.

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

van Dijk, D. R.

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

Vannahme, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

Vörckel, A.

Wahlbrink, T.

Wang, S.

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Wang, Y.

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Windeler, R. S.

Xiao, M.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Xiao, S.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Yagi, H.

T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese patent, 10-101333 (1998).

Yanagitani, T.

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).

T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese patent, 10-101333 (1998).

Yasui, K.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

Yi, N.

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Yoshioka, H.

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Yu, N.

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
[Crossref]

Zhang, N.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

A. Tulek, D. Akbulut, and M. Bayindir, “Ultralow threshold laser action from toroidal polymer microcavity,” Appl. Phys. Lett. 94(20), 203302 (2009).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010).
[Crossref]

G. Lin, J. U. Fürst, D. V. Strekalov, and N. Yu, “Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators,” Appl. Phys. Lett. 103(18), 181107 (2013).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

A. Poleman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004).
[Crossref]

F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71(6) 747–749 (1997).
[Crossref]

M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O2 ceramics,” Appl. Phys. Lett. 67(1), 453–458 (1990).

IEEE Photonics Technology Letters (1)

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsuko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photonics Technology Letters 29(8), 667–670 (2017).
[Crossref]

J. Appl. Phys. (1)

M. Sekita, H. Haneda, and S. Shrasaki, “Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991).
[Crossref]

J. Opt. (1)

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18(12), 123002 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser & Photonics Reviews (1)

Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, and Q. Song, “Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array,” Laser & Photonics Reviews 12(1), 1700234 (2018).
[Crossref]

Nanoscale (1)

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10(4), 2045–2051, (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2, 721–727 (2008).
[Crossref]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q troid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

G. Kozyreff, J. L. D. Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Sci. Rep. (2)

H. Yoshioka, T. Ota, C. Chen, S. Ryu, K. Yasui, and Y. Oki, “Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temprature atmospheric ink-jet technique,” Sci. Rep. 5, 10623 (2015).
[Crossref]

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5, 13173 (2015).
[Crossref] [PubMed]

Other (2)

T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese patent, 10-101333 (1998).

H. Yoshioka, C. Chen, S. Ryu, J. Li, M. Ozawa, and Y. Oki, “Ultra-low threshold lasing at 0.8 µm from organic microdisk cavity by the ink-jet printing method,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.81.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of process and protocol of the ink-jet printing for producing silica microdisks. (a) Ink droplet is discharged onto substrate. (b) Solvent evaporates and the shape of the droplet is changed due to Marangoni convection. (c) Toroidal disk aggregates only remain on substrate.
Fig. 2
Fig. 2 Optical microscope images of silica microdisks on (a) PMMA, (b) slide glass, (c) ITO, (d) PET film, (e) FEP film.
Fig. 3
Fig. 3 Silica microdisk images: (a) SEM overview image, (b) SEM image of cross section of a broken microdisk, and (c) AFM 3D image of the edge.
Fig. 4
Fig. 4 Experimental setup for measurement of WGM lasing.
Fig. 5
Fig. 5 (a) WGM spectrum (blue line) under excitation of 11.00 µJ/mm2 and Q factors at each mode (black point). The inset shows a Lorentzian fitting result (red line) and fitted data (gray points). (b) Input-output characteristics of five modes shown in (a). The inset shows a rhodamine 6G doped silica microdisk under optical excitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 π n R ,
f ( x ) = d ( 1 + ( x μ ) 2 σ 2 ) ,

Metrics