Abstract

A new method of hybrid photolithography, Laser Augmented Microlithographic Patterning (LAMP), is described in which direct laser writing is used to define additional features to those made with an inexpensive transparency mask. LAMP was demonstrated with both positive- and negative-tone photoresists, S1813 and SU-8, respectively. The laser written features, which can have sub-micron linewidths, can be registered to within 2.2 µm of the mask created features. Two example structures, an interdigitated electrode and a microfluidic device that can capture an array of dozens of silica beads or living cells, are described. This combination of direct laser writing and conventional UV lithography compensates for the drawbacks of each method, and enables high resolution prototypes to be created, tested, and modified quickly.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid lithography: Combining UV-exposure and two photon direct laser writing

Carsten Eschenbaum, Daniel Großmann, Katja Dopf, Siegfried Kettlitz, Tobias Bocksrocker, Sebastian Valouch, and Uli Lemmer
Opt. Express 21(24) 29921-29926 (2013)

Comparative analysis of direct laser writing and nanoimprint lithography for fabrication of optical phase elements

Shlomi Lightman, Raz Gvishi, Gilad Hurvitz, and Ady Arie
Appl. Opt. 55(34) 9724-9730 (2016)

Laser scanner for direct writing lithography

Clemens Rensch, Stefan Hell, Manfred v. Schickfus, and Siegfried Hunklinger
Appl. Opt. 28(17) 3754-3758 (1989)

References

  • View by:
  • |
  • |
  • |

  1. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
    [Crossref] [PubMed]
  2. Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
    [Crossref]
  3. C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
    [Crossref] [PubMed]
  4. M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
    [Crossref]
  5. L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
    [Crossref]
  6. C. Eschenbaum, D. Großmann, K. Dopf, S. Kettlitz, T. Bocksrocker, S. Valouch, and U. Lemmer, “Hybrid lithography: Combining UV-exposure and two photon direct laser writing,” Opt. Express 21(24), 29921–29926 (2013).
    [Crossref] [PubMed]
  7. R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
    [Crossref] [PubMed]
  8. C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
    [Crossref]
  9. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
    [Crossref]
  10. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [Crossref] [PubMed]
  11. R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
    [Crossref]
  12. R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
    [Crossref] [PubMed]
  13. D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
    [Crossref] [PubMed]

2015 (1)

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

2013 (2)

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

C. Eschenbaum, D. Großmann, K. Dopf, S. Kettlitz, T. Bocksrocker, S. Valouch, and U. Lemmer, “Hybrid lithography: Combining UV-exposure and two photon direct laser writing,” Opt. Express 21(24), 29921–29926 (2013).
[Crossref] [PubMed]

2009 (3)

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
[Crossref]

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[Crossref] [PubMed]

2008 (1)

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[Crossref] [PubMed]

2007 (2)

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
[Crossref]

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

2004 (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

1998 (2)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[Crossref]

1995 (1)

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Baldacchini, T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Bocksrocker, T.

Cooper, J. M.

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

Craighead, H. G.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

Dopf, K.

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Emnéus, J.

L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
[Crossref]

Endo, H.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Eschenbaum, C.

Faley, S.

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

Farrer, R. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Fourkas, J. T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Gersborg-Hansen, M.

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
[Crossref]

Großmann, D.

Ingram, M.

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

Izumi, M.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Kaehr, B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[Crossref] [PubMed]

Kettlitz, S.

Kristensen, A.

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
[Crossref]

Kubista, M.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

LaFratta, C. N.

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[Crossref] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Lemmer, U.

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Mironov, A.

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
[Crossref]

Montelius, L.

L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
[Crossref]

Naughton, M. J.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Nielson, R.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[Crossref] [PubMed]

Nygren, J.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Ohno, R.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Ohnuki, H.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Pelse, I.

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

Saleh, B. E. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Schueller, O. J.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Shear, J. B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[Crossref] [PubMed]

Simoska, O.

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

Sjöback, R.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Skjolding, L. H. D.

L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
[Crossref]

Teich, M. C.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Teixidor, G. T.

L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
[Crossref]

Thamdrup, L. H.

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
[Crossref]

Tsuya, D.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Valouch, S.

Waggoner, P. S.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

Walt, D. R.

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[Crossref] [PubMed]

Wang, H.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Weng, S.

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[Crossref]

Wikswo, J. P.

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

Wlodkowic, D.

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[Crossref]

Yokoyama, T.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Zagnoni, M.

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

Anal. Chem. (2)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, “Microfluidic single-cell array cytometry for the analysis of tumor apoptosis,” Anal. Chem. 81(13), 5517–5523 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

Y. Xia and G. M. Whitesides, “Soft Lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[Crossref]

Biosens. Bioelectron. (1)

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Chem. Rev. (1)

C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108(31), 11256–11258 (2004).
[Crossref]

Lab Chip (1)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007).
[Crossref] [PubMed]

Microelectron. Eng. (2)

M. Gersborg-Hansen, L. H. Thamdrup, A. Mironov, and A. Kristensen, “Combined electron beam and UV lithography in SU-8,” Microelectron. Eng. 84(5-8), 1058–1061 (2007).
[Crossref]

L. H. D. Skjolding, G. T. Teixidor, J. Emnéus, and L. Montelius, “Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures,” Microelectron. Eng. 86(4-6), 654–656 (2009).
[Crossref]

Microfluid. Nanofluid. (1)

C. N. LaFratta, O. Simoska, I. Pelse, S. Weng, and M. Ingram, “A convenient direct laser writing system for the creation of microfluidic masters,” Microfluid. Nanofluid. 19(2), 419–426 (2015).
[Crossref]

Opt. Express (1)

Small (1)

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(6), L7–L21 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental steps involved in the laser augmented microlithographic patterning (LAMP) procedure for both positive and negative photoresists. The photoresist is first exposed to UV light through a transparency mask, then the exposed region changes color, allowing registration for new features patterned by direct laser writing (DLW). Development then yields positive (S1813) or negative (SU-8F) final microstructures.
Fig. 2
Fig. 2 Both S1813 and SU-8F show a photobleaching/photochromic effect following exposure to UV, which enables registration between features made with a mask and those made with the laser. Images (A) and (B) show 25 mm coverslips coated in SU-8F before and after exposure, respectively. In (B) the exposure pattern is outlined. (C) Shows the contrast of SU-8F on the DLW microscope for the area corresponding to the small square in (B). (D-F) are the analogous images for S1813. The scalebars in (C) and (F) are 250 μm.
Fig. 3
Fig. 3 Linewidth data for a 20 × 0.75 NA objective. S1813 lines were written at 40 µm/s and SU-8F lines at 10 µm/s. The inset show SEM micrographs; the scale bars are 2 µm.
Fig. 4
Fig. 4 (A) Schematic of the rectangles on the mask that were used for registration marks. The thin red lines were drawn with the laser and their distance from the center of the rectangle, either Δx or Δy, was measured by SEM. (B) Typical set of laser augmented registration lines. (C) Close-up of a registration rectangle showing how Δx was measured and calculated.
Fig. 5
Fig. 5 (A) Optical micrograph in reflectance mode of an interdigitated electrode (IDE) patterned by LAMP using S1813 photoresist (scalebar 250 µm). The inset shows a closeup view of the same IDE (scalebar 25 µm). (B) Schematic showing the IDE-like mask pattern that was used to pattern 15 µm wide lines that were augmented with 2 µm wide lines. This pattern was used to create a cell trapping microfluidic. (C) Shows an array of trapped S. cerevisia cells (scalebar 30 µm). (D) Shows an array of trapped 5 µm diameter silica beads in a PDMS microfluidic device containing green dyed water (scalebar 50 µm).

Metrics