Abstract

We report progress in the development of tunable room temperature triggered single photon sources based on single nitrogen-vacancy (NV) centres in nanodiamond coupled to open access optical micro-cavities. The feeding of fluorescence from an NV centre into the cavity mode increases the spectral density of the emission and results in an output stream of triggered single photons with spectral line width of order 1 nm, tunable in the range 640 – 700 nm. We record single photon purities exceeding 96% and estimated device efficiencies up to 3%. We compare performance using plano-concave microcavities with radii of curvature from 25 μm to 4 μm and show that up to 17% of the total emission is fed into the TEM00 mode. Pulsed Hanbury-Brown Twiss (HBT) interferometry shows that an improvement in single photon purity is facilitated due to the increased spectral density.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Towards a picosecond transform-limited nitrogen-vacancy based single photon source

Chun-Hsu Su, Andrew D. Greentree, and Lloyd C. L. Hollenberg
Opt. Express 16(9) 6240-6250 (2008)

Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond

Beatrice Rodiek, Marco Lopez, Helmuth Hofer, Geiland Porrovecchio, Marek Smid, Xiao-Liu Chu, Stephan Gotzinger, Vahid Sandoghdar, Sarah Lindner, Christoph Becher, and Stefan Kuck
Optica 4(1) 71-76 (2017)

Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system

Cong Cao, Yu-Wen Duan, Xi Chen, Ru Zhang, Tie-Jun Wang, and Chuan Wang
Opt. Express 25(15) 16931-16946 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
    [Crossref]
  2. L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
    [Crossref] [PubMed]
  3. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
    [Crossref]
  4. A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
    [Crossref]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
    [Crossref] [PubMed]
  6. Quantum Cryptography Victoria - http://qcvictoria.com/
  7. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  8. A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79, 053838 (2009).
    [Crossref]
  9. Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
    [Crossref]
  10. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
    [Crossref]
  11. G. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, “A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies,” Opt. Express 14(6), 2289 (2006).
    [Crossref] [PubMed]
  12. T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
    [Crossref]
  13. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556 (2010).
    [Crossref] [PubMed]
  14. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  15. R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
    [Crossref]
  16. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
    [Crossref]
  17. Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
    [Crossref]
  18. H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
    [Crossref]
  19. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref]
  20. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
    [Crossref]
  21. S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
    [Crossref]
  22. D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)
  23. H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
    [Crossref]
  24. J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
    [Crossref]
  25. D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).
  26. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
    [Crossref] [PubMed]
  27. A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, “Topographic control of open-access microcavities at the nanometer scale,” Opt. Express 23(13), 17205 (2015).
    [Crossref] [PubMed]

2017 (3)

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

2016 (1)

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

2015 (3)

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, “Topographic control of open-access microcavities at the nanometer scale,” Opt. Express 23(13), 17205 (2015).
[Crossref] [PubMed]

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

2014 (2)

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

2013 (2)

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

2012 (2)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

2011 (3)

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

2010 (2)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556 (2010).
[Crossref] [PubMed]

2009 (2)

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
[Crossref] [PubMed]

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79, 053838 (2009).
[Crossref]

2006 (2)

2005 (1)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

2004 (1)

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2000 (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
[Crossref] [PubMed]

Aharonovich, I.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
[Crossref] [PubMed]

Albrecht, R.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Alléaume, Romain

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

Appel, P.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Arnold, C.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Auffèves, A.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79, 053838 (2009).
[Crossref]

Baker, H. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Balocchi, A.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Barbour, R. J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
[Crossref] [PubMed]

Becher, C.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Benedikter, J.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Benson, O.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
[Crossref] [PubMed]

Bhongale, S.

Bommer, A.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Braun, P.-F.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Bray, K.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

Brokmann, X.

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Chang, H. C

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Chang, H.C.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Chatterjee, S.

Chen, E. H.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Chen, Y. C.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Coles, D. M.

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Cui, G.

Curran, A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Dahan, M.

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Dal Savio, C.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Dalgarno, P. A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Desbiolles, P.

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Di, Z.

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

Dolan, P. R.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, “Topographic control of open-access microcavities at the nanometer scale,” Opt. Express 23(13), 17205 (2015).
[Crossref] [PubMed]

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556 (2010).
[Crossref] [PubMed]

Dolde, F.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Dumeige, Y.

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

Engel, P.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

Englund, D.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Fairclough, S. M.

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

Fedder, H.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Fill, J.

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

Ford, M. J.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

Gazzano, O.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Gérard, J.-M.

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79, 053838 (2009).
[Crossref]

Giacobino, E.

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Gibbs, H. M.

Giesz, V.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Götzinger, S.

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Grange, T.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Grangier, Philippe

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

Grazioso, F.

Haeusser, P.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Hall, D. R.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Hannigan, J. M.

Hänsch, T. W.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Hermier, J. P.

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Holland, M.

Hornecker, G.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Hughes, G. M.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, “Topographic control of open-access microcavities at the nanometer scale,” Opt. Express 23(13), 17205 (2015).
[Crossref] [PubMed]

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556 (2010).
[Crossref] [PubMed]

Hümmer, T.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Hunger, D.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Johnson, S.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Jones, H. V.

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

Karaveli, S.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Karrai, K.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Kaupp, H.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Kelkar, H.

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Khitrova, G.

Kraft, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Krueger, A.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
[Crossref] [PubMed]

Lanco, L.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Lemaître, A.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Li, L.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Liang, Y.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Loeckenhoff, R.

Mader, M.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Maletinsky, P.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Markham, M. L.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Martin-Cano, D.

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Matinaga, F. M.

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
[Crossref] [PubMed]

Messin, G.

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Mosor, S.

Mouradian, S. L.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Mücklich, F.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

Neu, E.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Nowak, A. K.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Nowak, K. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Patton, B. R.

Pauly, C.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

Petroff, P. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Poizat, J.-P.

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79, 053838 (2009).
[Crossref]

Portalupi, S. L.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Raymer, M. G.

Reichel, J.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Riedel, D.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Roch, Jean-François

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

Sagnes, I.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Sandoghdar, V.

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Schell, A. W.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

Schietinger, S.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
[Crossref] [PubMed]

Schlederer, B.

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

Schröder, T.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

Senellart, P.

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Shields, B. J.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Smith, J. M.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, “Topographic control of open-access microcavities at the nanometer scale,” Opt. Express 23(13), 17205 (2015).
[Crossref] [PubMed]

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556 (2010).
[Crossref] [PubMed]

Söllner, I.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Starosielec, S.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Stoltz, N. G.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Toth, M.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

Tran, T. T.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

Treussart, François

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

Trichet, A. A. P.

A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and J. M. Smith, “Topographic control of open-access microcavities at the nanometer scale,” Opt. Express 23(13), 17205 (2015).
[Crossref] [PubMed]

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Twitchen, D. J.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Utikal, T.

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Wang, D.

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Warburton, R. J.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

Watt, A. A. R.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
[Crossref] [PubMed]

Weng, L.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Wincott, M. B.

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
[Crossref] [PubMed]

Zheng, J.

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

AIP Advances (1)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Advances 2, 012119 (2012).
[Crossref]

Appl. Phys. Lett. (3)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Appl. Phys. Lett. 105, 073113 (2014).
[Crossref]

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 111110 (2006).
[Crossref]

J. Appl. Phys. (1)

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110(5), 053107 (2011).
[Crossref]

Nano Lett. (2)

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694 (2009).
[Crossref] [PubMed]

L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating,” Nano Lett. 15(3), 1493 (2015).
[Crossref] [PubMed]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Nature Commun. (1)

A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I. Sagnes, A. Lemaître, and P. Senellart, “Deterministic and electrically tunable bright single-photon source,” Nature Commun. 5, 3240 (2014).
[Crossref]

Nature Nanotech. (1)

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech. 11(1), 37 (2011).
[Crossref]

New J. Phys. (5)

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” New J. Phys. 6, 99 (2004).
[Crossref]

Y. Dumeige, Romain Alléaume, Philippe Grangier, François Treussart, and Jean-François Roch, “Controlling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Pérot microcavity,” New J. Phys. 13, 025015 (2011).
[Crossref]

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffèves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Z. Di, H. V. Jones, P. R. Dolan, S. M. Fairclough, M. B. Wincott, J. Fill, G. M. Hughes, and J. M. Smith, “Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities,” New J. Phys. 14(10), 103048 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

H. Kaupp, C. Deutsch, H. C Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A 79, 053838 (2009).
[Crossref]

Phys. Rev. Appl. (2)

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl. 6, 054010 (2016).
[Crossref]

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Phys. Rev. Lett. (2)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290 (2000).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Phys. Rev. X (2)

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X 7, 031040 (2017)

D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, and V. Sandoghdar, “Coherent coupling of a single molecule to a scanning Fabry-Pérot microcavity,” Phys. Rev. X 7, 021014 (2017).

Other (1)

Quantum Cryptography Victoria - http://qcvictoria.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A scanning electron micrograph (SEM) of a fused silica plinth with multiple RoC features FIB milled onto surface and then deposited with DBR coating. A sputtered gold coating has been applied to facilitate electron imaging. Feature RoCs are highlighted and the scale bar is 20 μm (b) Cross sectional SEM of an RoC 8 μm feature showing the deposited DBR layers where the scale bar is 5 μm.(c) A photoluminescence (PL) image showing NV fluorescence when DBR oriented to face the objective lens. NV1 is circled in red and the scale bar is 20 μm.(d) PL image of the same region inverted and arranged in front of an array of optical microcavities. NV1 is circled in red and the scale bar is 20 μm. Insets show sketches of sample arrangements.
Fig. 2
Fig. 2 (a) Spectra collected from a single NV centre (NV1) coupled to open access microcavities with radii of curvature 25, 12, 8 and 4 μm from top to bottom. Peaks are labelled according to the sum of their Hermite-Gauss trnasverse mode indices. (b) PL images of NV1 coupled to the four cavities. The scale bar is 15 μm.
Fig. 3
Fig. 3 (a) Enhanced photon count rates for a RoC 8 μm feature closed around NV2. Peak labels show the number of field antinodes between the mirrors. The inset shows the approximate cavity lengths of spectra shown in (b). (b) Collected spectra at several points observed by tuning the cavity length over the intensity maximum in a). Note that the line widths shown here are inhomogeneously broadened by spectral drift over the integration time. (c) Observed emission spectrum of NV2 prior to cavity coupling (blue), and inferred emission spectrum of NV2 after removing the effect of the DBR mirror using FDTD (green). TEM00 modes (red), show agreement in phonon sideband maximum and optimum fluorescence collection rates.
Fig. 4
Fig. 4 (a) Saturation curves obtained for NV2 on the DBR facing the collection objective (blue), the full emission when coupled to an RoC 8 μm feature (red), filtered TEM00 mode (green). (b) CW HBT measurements performed for the same three situations, showing single photon emission is maintained throughout. The datasets are offset along the y-axis at increments of one unit for clarity. (c) Pulsed HBT measurements for the three situations. The inset highlights a small degradation in single photon purity for the full cavity emission (red), but an improvement when a single mode is filtered (green). (d) Exponential decays with uncorrelated background components are fitted to all three data sets for the regions around t = 0 and the peaks at t = 200 ns. The colour scheme is maintained (DBR facing objective, all cavity modes and single TEM00 mode shown in blue, red and green respectively).
Fig. 5
Fig. 5 Time resolved photo luminescence measurements performed on NV2 whilst coupled to an RoC 8 μm cavity (green) and on a DBR facing the objective lens (blue).

Metrics