Abstract

This paper proposes and demonstrates an enhanced secure 4-D modulation optical generalized filter bank multi-carrier (GFBMC) system based on joint constellation and Stokes vector scrambling. The constellation and Stokes vectors are scrambled by using different scrambling parameters. A multi-scroll Chua’s circuit map is adopted as the chaotic model. Large secure key space can be obtained due to the multi-scroll attractors and independent operability of subcarriers. A 40.32Gb/s encrypted optical GFBMC signal with 128 parallel subcarriers is successfully demonstrated in the experiment. The results show good resistance against the illegal receiver and indicate a potential way for the future optical multi-carrier system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Secure coherent optical multi-carrier system with four-dimensional modulation space and Stokes vector scrambling

Lijia Zhang, Bo Liu, and Xiangjun Xin
Opt. Lett. 40(12) 2858-2861 (2015)

A novel 3D constellation-masked method for physical security in hierarchical OFDMA system

Lijia Zhang, Bo Liu, Xiangjun Xin, and Deming Liu
Opt. Express 21(13) 15627-15633 (2013)

Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling

Lijia Zhang, Xiangjun Xin, Bo Liu, and Xiaoli Yin
Opt. Express 20(26) B32-B37 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y.-K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
    [Crossref] [PubMed]
  2. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [Crossref] [PubMed]
  3. K. Roberts, S. H. Foo, M. Moyer, M. Hubbard, A. Sinclair, J. Gaudette, and C. Laperle, “High capacity transport—100G and beyond,” J. Lightwave Technol. 33(3), 563–578 (2015).
    [Crossref]
  4. J. Zhao and L.-K. Chen, “Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats,” Opt. Express 25(8), 9368–9377 (2017).
    [Crossref] [PubMed]
  5. O. Vassilieva, I. Kim, T. Oyama, S. Oda, H. Nakashima, T. Hoshida, and T. Ikeuchi, “Reach extension with 32- and 64 GBaud single carrier vs. multi-carrier signals,” in Proc. OFC’17 (2017), paper. Th2A.60.
    [Crossref]
  6. S. Shimizu, G. Cincotti, and N. Wada, “All-optical Nyquist-OTDM to Nyquist-WDM conversion for high-granular flexible optical networks,” Opt. Express 25(4), 3496–3503 (2017).
    [Crossref] [PubMed]
  7. B. Liu, L. Zhang, X. Xin, and J. Yu, “Robust generalized filter bank multi-carrier based optical access system with electrical polar coding,” Photonics J. 8(5), 7906507 (2016).
  8. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for short-reach optical communication,” Opt. Lett. 39(11), 3110–3113 (2014).
    [Crossref] [PubMed]
  9. M. Chagnon, M. Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. Plant, “Digital signal processing for dual-polarization intensity and interpolarization phase modulation formats using Stokes detection,” J. Lightwave Technol. 34(1), 188–195 (2016).
    [Crossref]
  10. D. Che, F. Yuan, and W. Sheih, “200-Gb/s Polarization-multiplexed DMT using Stokes vector receiver with frequency-domain MIMO,” in Proc.OFC’17 (2017), paper.Tu3C.4.
    [Crossref]
  11. A. Li, Z. Li, Y. Wen, W.-R. Peng, Y. Cui, and Y. Bai, “192-Gb/s 160-km Transmission of Carrier-Assisted Dual-Polarization Signal with Stokes Vector Direct Detection,” in Proc. OFC’17 (2017), paper. W1A.2.
  12. Q. Hu, D. Che, Y. Wang, and W. Shieh, “PMD induced impairment mitigation in Stokes vector direct detection systems,” in Proc. OFC’15 (2015), paper. Th1E.2.
    [Crossref]
  13. M. C. Yuang, P. L. Tien, D. Z. Hsu, S. Y. Chen, C. C. Wei, J. L. Shih, and J. Chen, “A high-performance OFDMA PON system architecture and medium access control,” J. Lightwave Technol. 30(11), 1685–1693 (2012).
    [Crossref]
  14. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
    [Crossref]
  15. H. Endo, M. Fujiwara, M. Kitamura, T. Ito, M. Toyoshima, Y. Takayama, H. Takenaka, R. Shimizu, N. Laurenti, G. Vallone, P. Villoresi, T. Aoki, and M. Sasaki, “Free-space optical channel estimation for physical layer security,” Opt. Express 24(8), 8940–8955 (2016).
    [Crossref] [PubMed]
  16. W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
    [Crossref]
  17. L. Zhang, B. Liu, and X. Xin, “Secure coherent optical multi-carrier system with four-dimensional modulation space and Stokes vector scrambling,” Opt. Lett. 40(12), 2858–2861 (2015).
    [Crossref] [PubMed]
  18. S. Ozoguz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos generator using nonlinear transconductor,” Electron. Lett. 38(14), 685–686 (2002).
    [Crossref]
  19. B. Liu, L. Zhang, and X. Xin, “Non-orthogonal optical multicarrier access based on filter bank and SCMA,” Opt. Express 23(21), 27335–27342 (2015).
    [Crossref] [PubMed]
  20. H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” in Proc.OFC’09 (2009), paper OWG2.
  21. “TOP500 the list,” https://www.top500.org/lists/2017/06/

2017 (3)

2016 (5)

2015 (3)

2014 (1)

2012 (1)

2011 (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

2002 (1)

S. Ozoguz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos generator using nonlinear transconductor,” Electron. Lett. 38(14), 685–686 (2002).
[Crossref]

Aoki, T.

Bülow, H.

H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” in Proc.OFC’09 (2009), paper OWG2.

Chagnon, M.

Chandrasekhar, S.

Che, D.

Chen, C.

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

Chen, J.

Chen, L.-K.

Chen, S. Y.

Chen, X.

Chen, Y.-K.

Cincotti, G.

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Dong, P.

Elwakil, A. S.

S. Ozoguz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos generator using nonlinear transconductor,” Electron. Lett. 38(14), 685–686 (2002).
[Crossref]

Endo, H.

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Foo, S. H.

Fu, S.

Fujiwara, M.

Gaudette, J.

Hsu, D. Z.

Hu, Q.

Hubbard, M.

Ito, T.

Jin, W.

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

Kim, K.

Kitamura, M.

Laperle, C.

Laurenti, N.

Li, A.

Li, X.

Liu, B.

Moyer, M.

Osman, M.

Ozoguz, S.

S. Ozoguz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos generator using nonlinear transconductor,” Electron. Lett. 38(14), 685–686 (2002).
[Crossref]

Patel, D.

Plant, D.

Prucnal, P. R.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Qiu, K.

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

Roberts, K.

Salama, K. N.

S. Ozoguz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos generator using nonlinear transconductor,” Electron. Lett. 38(14), 685–686 (2002).
[Crossref]

Samani, A.

Sasaki, M.

Shieh, W.

Shih, J. L.

Shimizu, R.

Shimizu, S.

Sinclair, A.

Sinsky, J. H.

Takayama, Y.

Takenaka, H.

Tien, P. L.

Toyoshima, M.

Vallone, G.

Veerasubramanian, V.

Villoresi, P.

Wada, N.

Wang, Y.

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Wei, C. C.

Xin, X.

Yang, Q.

Yi, L.

Yu, J.

B. Liu, L. Zhang, X. Xin, and J. Yu, “Robust generalized filter bank multi-carrier based optical access system with electrical polar coding,” Photonics J. 8(5), 7906507 (2016).

Yuang, M. C.

Zhang, C.

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

Zhang, H.

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

Zhang, L.

Zhang, W.

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

Zhao, J.

Zhou, S.

Electron. Lett. (1)

S. Ozoguz, A. S. Elwakil, and K. N. Salama, “n-scroll chaos generator using nonlinear transconductor,” Electron. Lett. 38(14), 685–686 (2002).
[Crossref]

IEEE Photonics J. (1)

W. Zhang, C. Zhang, C. Chen, H. Zhang, W. Jin, and K. Qiu, “Hybrid Chaotic Confusion and Diffusion for Physical Layer Security in OFDM-PON,” IEEE Photonics J. 9(2), 7201010 (2017).
[Crossref]

IEEE Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (5)

Opt. Lett. (3)

Photonics J. (1)

B. Liu, L. Zhang, X. Xin, and J. Yu, “Robust generalized filter bank multi-carrier based optical access system with electrical polar coding,” Photonics J. 8(5), 7906507 (2016).

Other (6)

O. Vassilieva, I. Kim, T. Oyama, S. Oda, H. Nakashima, T. Hoshida, and T. Ikeuchi, “Reach extension with 32- and 64 GBaud single carrier vs. multi-carrier signals,” in Proc. OFC’17 (2017), paper. Th2A.60.
[Crossref]

D. Che, F. Yuan, and W. Sheih, “200-Gb/s Polarization-multiplexed DMT using Stokes vector receiver with frequency-domain MIMO,” in Proc.OFC’17 (2017), paper.Tu3C.4.
[Crossref]

A. Li, Z. Li, Y. Wen, W.-R. Peng, Y. Cui, and Y. Bai, “192-Gb/s 160-km Transmission of Carrier-Assisted Dual-Polarization Signal with Stokes Vector Direct Detection,” in Proc. OFC’17 (2017), paper. W1A.2.

Q. Hu, D. Che, Y. Wang, and W. Shieh, “PMD induced impairment mitigation in Stokes vector direct detection systems,” in Proc. OFC’15 (2015), paper. Th1E.2.
[Crossref]

H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” in Proc.OFC’09 (2009), paper OWG2.

“TOP500 the list,” https://www.top500.org/lists/2017/06/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of 4D modulation space scrambling (a) intra-subcarrier; (b) among subcarriers.
Fig. 2
Fig. 2 The experimental setup (AWG: arbitrary waveform generator; SSMF: standard single mode fiber; LO: local oscillator; DSO: digital signal oscillator; BERT: bit error rate testing).
Fig. 3
Fig. 3 (a) The frequency response of the prototype filter; (b) the signal spectra of Ix and Qx parts; (c) the conventional phase diagram with double-scroll; (d) the phase diagram with multi-scroll.
Fig. 4
Fig. 4 The normalized constellation phase distributions (a) before scrambling; (b) after scrambling.
Fig. 5
Fig. 5 The measured BER curves with and without the correct key (b2b: back to back; w/: with; w/o: without).
Fig. 6
Fig. 6 The measured BER for different OSNRs and subcarriers across the signal bandwidth.
Fig. 7
Fig. 7 The measured BER with parts of the correct scrambling parameters at the illegal receiver.
Fig. 8
Fig. 8 The measured BER with different encryptions at the illegal receiver.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{ x/t=α(yf(x)) y/t=xy+z z/t=βy
f(x)= a M x+ 1 2 i M ( a i1 a i )(|x+ b i ||x b i |)
S k,n '= e j φ k ( s 1,n s 2,n s 6,n ) Γ k,m = e j φ k ( s 1,n s 2,n s 6,n ) [ τ 1,m , τ 2,m ,..., τ 6,m ] T ,k,m=1,2,...,6
φ k =sin[2πmod(Nx, N p )], N p = abs(x)
τ k,m ={ 1,m= ψ i 0,m ψ i
ψ i =sort(mod(y,1))
H={ H k,m 1 , H n,n 2 }
s(t)= n=1 N [p(t)cos(2π f n t)Re(S ' k,n H k,m 1 ) H n,n 2 p(t)sin(2π f n t)Im(S ' k,n H k,m 1 ) H n,n 2 ]
p(t)={ a 0 +2 q=1 Q1 a q cos(2πqt) ,|t|< 1 2 0,otherwise

Metrics