Abstract

We introduce and experimentally demonstrate a new design for passive Talbot amplification of repetitive optical waveforms, in which the gain factor can be electrically reconfigurable. The amplifier setup is composed of an electro-optic phase modulator followed by an optical dispersive medium. In contrast to conventional Talbot amplification, here we achieve different amplification factors by using combinations of fixed dispersion and programmable temporal phase modulation. To validate the new design, we experimentally show tunable, passive amplification of picosecond optical pulses with gain factors from m = 2 to 30 using a fixed dispersive line (a linearly chirped fiber Bragg grating).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Discretely programmable microwave photonic filter based on temporal Talbot effects

Reza Maram, Daniel Onori, José Azaña, and Lawrence R. Chen
Opt. Express 27(10) 14381-14391 (2019)

Complete family of periodic Talbot filters for pulse repetition rate multiplication

José Azaña and Shulabh Gupta
Opt. Express 14(10) 4270-4279 (2006)

Arbitrary energy-preserving control of the line spacing of an optical frequency comb over six orders of magnitude through self-imaging

Hugues Guillet de Chatellus, Luis Romero Cortés, and José Azaña
Opt. Express 26(16) 21069-21085 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  2. J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
    [Crossref]
  3. P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers: Fundamentals and Technology,” (Academic Press, SanDiego, CA, 1999).
  4. R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
    [Crossref] [PubMed]
  5. R. J. Jones and J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett. 27(20), 1848–1850 (2002).
    [Crossref] [PubMed]
  6. R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
    [Crossref] [PubMed]
  7. R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.
  8. A. Rostami, H. Baghban, and R. Maram, “Nanostructure semiconductor optical amplifiers: building blocks for all-optical processing,” Springer-Verlag (2011).
  9. N. K. Dutta and Q. Wang, “Semiconductor Optical Amplifiers,” World Sceientific (2006).
  10. J. Jeon, R. Maram, J. van Howe, and J. Azaña, “Programmable passive waveform amplifier based on temporal self-imaging effects,” Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, paper: SF2L.1 (2017).
    [Crossref]
  11. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
    [Crossref]
  12. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71(11), 1373–1376 (1981).
    [Crossref]
  13. F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998).
    [Crossref]
  14. J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).
  15. J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5(1), 83–130 (2013).
    [Crossref]
  16. H. Guillet de Chatellus, E. Lacot, O. Hugon, O. Jacquin, N. Khebbache, and J. Azaña, “Phases of Talbot patterns in angular self-imaging,” J. Opt. Soc. Am. A 32(6), 1132–1139 (2015).
    [Crossref] [PubMed]
  17. J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett. 36(6), 858–860 (2011).
    [Crossref] [PubMed]
  18. R. Maram, L. Romero Cortés, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” IEEE, J. Lightwave Technol. 34(2), 448–455 (2016).
    [Crossref]

2016 (1)

R. Maram, L. Romero Cortés, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” IEEE, J. Lightwave Technol. 34(2), 448–455 (2016).
[Crossref]

2015 (1)

2014 (1)

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

2013 (2)

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5(1), 83–130 (2013).
[Crossref]

2011 (1)

2010 (1)

R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
[Crossref] [PubMed]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

2002 (1)

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

1998 (1)

F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998).
[Crossref]

1981 (1)

Akimov, A. V.

R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
[Crossref] [PubMed]

Azaña, J.

R. Maram, L. Romero Cortés, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” IEEE, J. Lightwave Technol. 34(2), 448–455 (2016).
[Crossref]

H. Guillet de Chatellus, E. Lacot, O. Hugon, O. Jacquin, N. Khebbache, and J. Azaña, “Phases of Talbot patterns in angular self-imaging,” J. Opt. Soc. Am. A 32(6), 1132–1139 (2015).
[Crossref] [PubMed]

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Beardsley, R. P.

R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
[Crossref] [PubMed]

Beltrán, M.

Blows, J.

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

Bolger, J.

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

Caraquitena, J.

Cheng, J.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Dearden, G.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Eggleton, B.

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

Guillet de Chatellus, H.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Henini, M.

R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
[Crossref] [PubMed]

Hu, P.

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

Hugon, O.

Jacquin, O.

Jannson, J.

Jannson, T.

Jeon, J.

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Jones, R. J.

Kent, A. J.

R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
[Crossref] [PubMed]

Khebbache, N.

Lacot, E.

Li, M.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

Li, X.-Z.

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Liu, C.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Liu, D.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Llorente, R.

Maram, R.

R. Maram, L. Romero Cortés, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” IEEE, J. Lightwave Technol. 34(2), 448–455 (2016).
[Crossref]

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Martí, J.

Mitschke, F.

F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998).
[Crossref]

Mok, T.

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

Morgner, U.

F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998).
[Crossref]

Muriel, M. A.

J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett. 36(6), 858–860 (2011).
[Crossref] [PubMed]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

Perrie, W.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Romero Cortés, L.

R. Maram, L. Romero Cortés, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” IEEE, J. Lightwave Technol. 34(2), 448–455 (2016).
[Crossref]

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Seghilani, M.

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Shang, S.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Van Howe, J.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

Watkins, K.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Wen, J.

Xiao, M.

Ye, J.

Zhang, Y.

Adv. Opt. Photon. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

IEEE, J. Lightwave Technol. (1)

R. Maram, L. Romero Cortés, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” IEEE, J. Lightwave Technol. 34(2), 448–455 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014), doi:.
[Crossref] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Bolger, P. Hu, T. Mok, J. Blows, and B. Eggleton, “Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,” Opt. Commun. 249(4–6), 432–439 (2005).

Opt. Laser Technol. (1)

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Opt. Lett. (2)

Opt. Photon. News (1)

F. Mitschke and U. Morgner, “The temporal Talbot effect,” Opt. Photon. News 9(6), 45–47 (1998).
[Crossref]

Phys. Rev. Lett. (1)

R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, “Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice,” Phys. Rev. Lett. 104(8), 085501 (2010).
[Crossref] [PubMed]

Other (5)

P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers: Fundamentals and Technology,” (Academic Press, SanDiego, CA, 1999).

R. Maram, M. Seghilani, J. Jeon, X.-Z. Li, L. Romero Cortés, J. van Howe, and J. Azaña, “Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier,” IEEE Photon. Technol. Lett.in press.

A. Rostami, H. Baghban, and R. Maram, “Nanostructure semiconductor optical amplifiers: building blocks for all-optical processing,” Springer-Verlag (2011).

N. K. Dutta and Q. Wang, “Semiconductor Optical Amplifiers,” World Sceientific (2006).

J. Jeon, R. Maram, J. van Howe, and J. Azaña, “Programmable passive waveform amplifier based on temporal self-imaging effects,” Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, paper: SF2L.1 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Concept for programmable Talbot amplification: (a) Talbot carpet when the input repetition period T´ = 3T (b) Talbot carpet when the input repetition period T´´=2T = 2T. Pulse trains with repetition period T, at z zT´/3 and z = zT´´/2, result in different amplification factors using the same amount of dispersive delay (purple shading). The dashed blue lines represent the phase profiles of each of the temporal pulse trains in the carpet.
Fig. 2
Fig. 2 Method for phase preconditioning pulse trains for dispersion-induced temporal Talbot amplification. PM: phase modulator. DM: dispersive medium.
Fig. 3
Fig. 3 Experimental setup. MLL: mode-locked laser, BPF: band-pass filter, OA: optical amplifier, OD: optical delay line, PC: polarization controller, PM: phase modulator, LC-FBG: linearly chirped fiber Bragg grating, CLK: radio frequency clock source, AWG: arbitrary waveform generator, RF Amp: radio frequency (RF) amplifier.
Fig. 4
Fig. 4 Experimental results of the demonstrated programmable passive amplifier. (a) Prescribed temporal phase profile. The dashed black lines: Ideal temporal phase profile. The solid green lines: Actual phase profile drive generated from the AWG. (b) Measured optical spectra of the optical pulse trains after temporal phase modulation. Dashed, blue, double-arrow shows a 0.154-nm (19.2-GHz) span. (c) Temporal traces of the input and amplified output pulses (Input: dashed gray, Output: solid red), measured using a 500-GHz sampling oscilloscope.
Fig. 5
Fig. 5 Superimposed single temporal pulse waveforms measured at the system output for the different amplification factors achieved in the experiment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ 2 = ( qm+ms )m T 2 / 2π
φ n =2( s/m ) ( [ 1 s ] m ) 2 π n 2
φ n =2( s/m ) [ 1 2 ] m ( [ 1 2s ] m ) 2 π ( 2n+m ) 2

Metrics