Abstract

We report a broadly wavelength-tunable femtosecond diode-pumped Ti:sapphire laser, passively mode-locked using both semiconductor saturable absorber mirror (SESAM) and Kerr-lens mode-locking (KLM) techniques. Using two pump laser diodes (operating at 450 nm), an average output power as high as 433 mW is generated during mode-locking with the SESAM. A tunability range of 37 nm (788-825 nm) was achieved with the shortest pulse duration of 62 fs at 812 nm. In the KLM regime, an average output power as high as 382 mW, pulses as short as 54 fs, and a tunability of 120 nm (755-875 nm) are demonstrated.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer
Opt. Express 23(23) 30043-30048 (2015)

Power scaling of a directly diode-laser-pumped Ti:sapphire laser

Peter W. Roth, David Burns, and Alan J. Kemp
Opt. Express 20(18) 20629-20634 (2012)

Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

Sterling Backus, Matt Kirchner, Charles Durfee, Margaret Murnane, and Henry Kapteyn
Opt. Express 25(11) 12469-12477 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  2. K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
    [Crossref]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  4. J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photonics 4(5), 289 (2010).
    [Crossref]
  5. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  6. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
    [Crossref]
  7. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
    [Crossref] [PubMed]
  8. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36(2), 304–306 (2011).
    [Crossref] [PubMed]
  9. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref] [PubMed]
  10. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
    [Crossref] [PubMed]
  11. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
    [Crossref]
  12. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref] [PubMed]
  13. K. Gürel, V. J. Wittwer, S. Hakobyan, S. Schilt, and T. Südmeyer, “Carrier envelope offset frequency detection and stabilization of a diode-pumped mode-locked Ti:sapphire laser,” Opt. Lett. 42(6), 1035–1038 (2017).
    [Crossref] [PubMed]
  14. R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56(6), 1654–1661 (2017).
    [Crossref] [PubMed]
  15. A. Rohrbacher, O. E. Olarte, V. Villamaina, P. Loza-Alvarez, and B. Resan, “Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses,” Opt. Express 25(9), 10677–10684 (2017).
    [Crossref] [PubMed]
  16. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20(1), 16–18 (1995).
    [Crossref] [PubMed]
  17. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
    [Crossref]
  18. T. Brabec, P. F. Curley, Ch. Spielmann, E. Wintner, and A. J. Schmidt, “Hard-aperture Kerr-lens mode locking,” J. Opt. Soc. Am. B 10(6), 1029–1034 (1993).
    [Crossref]
  19. Chameleon Ultra Family white paper, (Coherent Inc., 2016), https://www.coherent.com/lasers/laser/chameleon-family/chameleon-ultra-family
  20. K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
    [Crossref]

2017 (3)

2015 (1)

2014 (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

2013 (2)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (2)

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

2009 (2)

1999 (1)

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

1996 (1)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

1995 (1)

1993 (1)

1986 (1)

Backus, S.

Birkedal, D.

K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
[Crossref]

Bjarklev, A.

K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
[Crossref]

Brabec, T.

Burns, D.

Curley, P. F.

Durfee, C.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Durfee, C. G.

Furusawa, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

Garlick, J.

Gürel, K.

Hakobyan, S.

Hansen, K. P.

K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
[Crossref]

Hill, S.

Hirosawa, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Hoffmann, M.

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Hvam, J. M.

K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
[Crossref]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Jensen, J. R.

K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
[Crossref]

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kafka, J. D.

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

Kannari, F.

R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56(6), 1654–1661 (2017).
[Crossref] [PubMed]

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kapteyn, H.

Kärtner, F. X.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20(1), 16–18 (1995).
[Crossref] [PubMed]

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Keller, U.

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20(1), 16–18 (1995).
[Crossref] [PubMed]

Kemp, A. J.

Kirchner, M.

Klein, J.

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Kumagai, H.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

Loza-Alvarez, P.

Maclean, A. J.

Midoikawa, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

Moulton, P. F.

Murnane, M.

Obara, M.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

Olarte, O. E.

Resan, B.

Rohrbacher, A.

Roth, P. W.

Saraceno, C. J.

Sawada, R.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Schilt, S.

Schmidt, A. J.

Shea, K.

Spielmann, Ch.

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Squier, J. A.

Storz, T.

Südmeyer, T.

Sugiyama, N.

Taft, G.

Takahashi, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

Tanaka, H.

Villamaina, V.

Weingarten, K.

Wintner, E.

Wittwer, V. J.

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

App. Phys. A (1)

K. Furusawa, K. Takahashi, H. Kumagai, K. Midoikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” App. Phys. A 69(7), 359–366 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton Mode-Locking with Saturable Absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photonics 4(5), 289 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Other (2)

Chameleon Ultra Family white paper, (Coherent Inc., 2016), https://www.coherent.com/lasers/laser/chameleon-family/chameleon-ultra-family

K. P. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” inProceedings of IEEE Optical Fiber Communication Conference and Exhibit (IEEE, 2002), pp. 622–624.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the SESAM mode-locked experimental setup. Inset: modifications to the cavity for KLM operation. (b) The SESAM low signal reflectivity spectrum.
Fig. 2
Fig. 2 (a) Intensity autocorrelation and (b) corresponding optical spectrum of the SESAM mode-locked Ti:sapphire laser producing a maximum average output power of 433 mW. (c) Corresponding radio frequency spectrum recorded with 100 kHz frequency span and 300 Hz resolution bandwidth.
Fig. 3
Fig. 3 (a) Intensity autocorrelation and (b) corresponding optical spectrum of the SESAM mode-locked Ti:sapphire laser producing 62 fs pulses.
Fig. 4
Fig. 4 The input-output characteristics of the SESAM mode-locked Ti:sapphire laser operating at the centre wavelength of 810 nm are shown in (a), while (b) shows the tuning curve of the laser with corresponding average output power.
Fig. 5
Fig. 5 (a) Intensity autocorrelation and (b) corresponding optical spectrum of the KLM Ti:sapphire laser producing 382 mW of average output power. The RF spectrum recorded with 100 kHz span and 300 Hz resolution bandwidth is shown in (c).
Fig. 6
Fig. 6 (a) Intensity autocorrelation and (b) corresponding optical spectrum for the KLM Ti:sapphire laser producing 54 fs pulses.
Fig. 7
Fig. 7 (a) The input-output characteristic of the KLM Ti:sapphire laser operating at the centre wavelength of 800 nm. (b) Tuning curve of the laser with corresponding average output powers.

Tables (1)

Tables Icon

Table 1 Comparison of ultrafast diode-pumped Ti:sapphire lasers.

Metrics