Abstract

Aimed at detecting fluorescent-labeled biological substances sensitively, a sensor that utilizes near-field light has attracted much attention. According to our calculations, a planar structure composed of two dielectric layers can enhance the electric field of UV near-field light effectively by inducing waveguide-mode (WM) resonance. The fluorescence intensity obtainable by a WM chip with an optimized structure is 5.5 times that obtainable by an optimized surface plasmon resonance chip. We confirmed the above by making a WM chip consisting of TiO2 and SiO2 layers on a silica glass substrate and by measuring the fluorescence intensity of a solution of quantum dots dropped on the chip.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor

Chiaki Kuroda, Yoshimichi Ohki, and Makoto Fujimaki
Opt. Express 25(21) 26011-26019 (2017)

Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction

S. Pimenta, S. Cardoso, A. Miranda, P. De Beule, E.M.S. Castanheira, and G. Minas
Biomed. Opt. Express 6(8) 3084-3098 (2015)

Highly sensitive refractive index sensor based on a TiO2 nanowire array

Qiu-Shun Li, Dong Xiang, Zhi-Min Chang, Jian-Guo Shi, Yao-Hong Ma, Lei Cai, Dong Feng, and Wen-Fei Dong
Appl. Opt. 56(7) 1930-1934 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [Crossref] [PubMed]
  2. L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
    [Crossref] [PubMed]
  3. H. Yamamura, Y. Suzuki, and Y. Imaizumi, “New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy,” J. Pharmacol. Sci. 128(1), 1–7 (2015).
    [Crossref] [PubMed]
  4. R.-Y. He, C.-Y. Lin, Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
    [Crossref] [PubMed]
  5. E. Chung, Y.-H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
    [Crossref] [PubMed]
  6. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
    [Crossref] [PubMed]
  7. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [Crossref] [PubMed]
  8. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  9. K. Diest, V. Liberman, D. M. Lennon, P. B. Welander, and M. Rothschild, “Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry,” Opt. Express 21(23), 28638–28650 (2013).
    [Crossref] [PubMed]
  10. D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single-and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
    [Crossref]
  11. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
    [Crossref] [PubMed]
  12. A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
    [Crossref] [PubMed]
  13. H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
    [Crossref] [PubMed]
  14. C. Kuroda, R. Iizuka, Y. Ohki, and M. Fujimaki, “Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria,” Jpn. J. Appl. Phys. (to be published).
  15. X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
    [Crossref] [PubMed]
  16. M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
    [Crossref] [PubMed]
  17. K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
    [Crossref]
  18. C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
    [Crossref]
  19. C. Kuroda, Y. Ohki, and M. Fujimaki, “Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor,” Opt. Express 25(21), 26011–26019 (2017).
    [Crossref] [PubMed]
  20. O. Arnon and P. Baumeister, “Electric field distribution and the reduction of laser damage in multilayers,” Appl. Opt. 19(11), 1853–1855 (1980).
    [Crossref] [PubMed]
  21. M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Sixth Edition (Cambridge University, 1997).
  22. E. D. Palik, G. Ghosh, and T. M. Cotter, Handbook of Optical Constants of Solids (Academic, 1998).
  23. Thermo Fisher Scientific HP, https://www.thermofisher.com/order/catalog/product/Q10163MP , (Retrieved on Nov. 8, 2017).
  24. J. E. Turner, D. J. Downing, and J. S. Bogard, Propagation of Error (Statistical Methods in Radiation Physics, 2012), pp. 199–214.
  25. A. B. Dahlin, Advances in Biomedical Spectroscopy, Plasmonic Biosensors (IOS, 2012).
  26. Thermo Fisher Scientific HP, https://www.thermofisher.com/jp/ja/home/references/molecular-probes-the-handbook/tables/extinction-coefficients-of-qdot-streptavidin-conjugates-at-common-wavelengths.html , (Retrieved on Dec. 16, 2017).
  27. Schott HP, http://www.schott.com/advanced_optics/japanese/abbe_datasheets/schott-datasheet-n-bk7.pdf , (Retrieved on Feb. 21, 2018).

2017 (3)

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

C. Kuroda, Y. Ohki, and M. Fujimaki, “Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor,” Opt. Express 25(21), 26011–26019 (2017).
[Crossref] [PubMed]

2015 (2)

M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
[Crossref] [PubMed]

H. Yamamura, Y. Suzuki, and Y. Imaizumi, “New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy,” J. Pharmacol. Sci. 128(1), 1–7 (2015).
[Crossref] [PubMed]

2014 (2)

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

2013 (4)

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single-and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[Crossref] [PubMed]

K. Diest, V. Liberman, D. M. Lennon, P. B. Welander, and M. Rothschild, “Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry,” Opt. Express 21(23), 28638–28650 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

2005 (1)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

2004 (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

2001 (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

1980 (1)

Akimoto, R.

Arnon, O.

Ashiba, H.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

Awazu, K.

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Baumeister, P.

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Chang, N.-S.

Chen, S.-J.

Chiu, K.-C.

Chung, E.

Diest, K.

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Fan, C.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Fujimaki, M.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

C. Kuroda, Y. Ohki, and M. Fujimaki, “Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor,” Opt. Express 25(21), 26011–26019 (2017).
[Crossref] [PubMed]

M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
[Crossref] [PubMed]

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

C. Kuroda, R. Iizuka, Y. Ohki, and M. Fujimaki, “Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria,” Jpn. J. Appl. Phys. (to be published).

Fukuda, N.

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

He, R.-Y.

Higo-Moriguchi, K.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

Huang, Q.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Iizuka, R.

C. Kuroda, R. Iizuka, Y. Ohki, and M. Fujimaki, “Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria,” Jpn. J. Appl. Phys. (to be published).

Imaizumi, Y.

H. Yamamura, Y. Suzuki, and Y. Imaizumi, “New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy,” J. Pharmacol. Sci. 128(1), 1–7 (2015).
[Crossref] [PubMed]

Inami, W.

Kato, T.

Kawata, Y.

Kikawada, M.

Kim, Y.-H.

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Kuroda, C.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

C. Kuroda, Y. Ohki, and M. Fujimaki, “Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor,” Opt. Express 25(21), 26011–26019 (2017).
[Crossref] [PubMed]

C. Kuroda, R. Iizuka, Y. Ohki, and M. Fujimaki, “Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria,” Jpn. J. Appl. Phys. (to be published).

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

Lakshmipriya, T.

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

Lennon, D. M.

Li, J.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Li, Q.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Liang, L.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Liberman, V.

Lin, C.-Y.

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Makishima, M.

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

Mattoussi, H.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Medintz, I. L.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nesterenko, D. V.

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single-and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nomura, K.

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Nowaczyk, K.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

Ohki, Y.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

C. Kuroda, Y. Ohki, and M. Fujimaki, “Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor,” Opt. Express 25(21), 26011–26019 (2017).
[Crossref] [PubMed]

M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
[Crossref] [PubMed]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

C. Kuroda, R. Iizuka, Y. Ohki, and M. Fujimaki, “Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria,” Jpn. J. Appl. Phys. (to be published).

Ono, A.

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Rothschild, M.

Sekkat, Z.

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single-and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

Sheppard, C. J. R.

Shi, J.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Shirato, H.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

So, P. T. C.

Su, Y.-D.

Sugiyama, Y.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

Suzuki, Y.

H. Yamamura, Y. Suzuki, and Y. Imaizumi, “New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy,” J. Pharmacol. Sci. 128(1), 1–7 (2015).
[Crossref] [PubMed]

Tang, W. T.

Taniguchi, K.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

Uyeda, H. T.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Wang, X.

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

M. Fujimaki, X. Wang, T. Kato, K. Awazu, and Y. Ohki, “Parallel-incidence-type waveguide-mode sensor with spectral-readout setup,” Opt. Express 23(9), 10925–10937 (2015).
[Crossref] [PubMed]

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

Welander, P. B.

Wu, H.-L.

Yamamura, H.

H. Yamamura, Y. Suzuki, and Y. Imaizumi, “New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy,” J. Pharmacol. Sci. 128(1), 1–7 (2015).
[Crossref] [PubMed]

Yan, H.

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem. 76(14), 4076–4081 (2004).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, and C. Fan, “Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells,” Angew. Chem. Int. Ed. Engl. 53(30), 7745–7750 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

H. Ashiba, Y. Sugiyama, X. Wang, H. Shirato, K. Higo-Moriguchi, K. Taniguchi, Y. Ohki, and M. Fujimaki, “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron. 93, 260–266 (2017).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. Nomura, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “Fluorescence enhancement by a SiO2-based monolithic waveguide structure for biomolecular detection,” J. Appl. Phys. 113(14), 143103 (2013).
[Crossref]

J. Pharmacol. Sci. (1)

H. Yamamura, Y. Suzuki, and Y. Imaizumi, “New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy,” J. Pharmacol. Sci. 128(1), 1–7 (2015).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, and M. Makishima, “Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood,” Jpn. J. Appl. Phys. 56(3), 037201 (2017).
[Crossref]

Nat. Mater. (1)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Plasmonics (1)

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single-and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

Traffic (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Other (8)

C. Kuroda, R. Iizuka, Y. Ohki, and M. Fujimaki, “Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria,” Jpn. J. Appl. Phys. (to be published).

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Sixth Edition (Cambridge University, 1997).

E. D. Palik, G. Ghosh, and T. M. Cotter, Handbook of Optical Constants of Solids (Academic, 1998).

Thermo Fisher Scientific HP, https://www.thermofisher.com/order/catalog/product/Q10163MP , (Retrieved on Nov. 8, 2017).

J. E. Turner, D. J. Downing, and J. S. Bogard, Propagation of Error (Statistical Methods in Radiation Physics, 2012), pp. 199–214.

A. B. Dahlin, Advances in Biomedical Spectroscopy, Plasmonic Biosensors (IOS, 2012).

Thermo Fisher Scientific HP, https://www.thermofisher.com/jp/ja/home/references/molecular-probes-the-handbook/tables/extinction-coefficients-of-qdot-streptavidin-conjugates-at-common-wavelengths.html , (Retrieved on Dec. 16, 2017).

Schott HP, http://www.schott.com/advanced_optics/japanese/abbe_datasheets/schott-datasheet-n-bk7.pdf , (Retrieved on Feb. 21, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic optical arrangement of the UV near-field fluorescence sensor with the two-layer WM chip (not to scale).
Fig. 2
Fig. 2 (a) Normalized electric field strength squared, Nwm(375, 0), calculated for the WM chip as a function of thicknesses of the TiO2 layer 1 and the SiO2 layer 2. The base angle ϕ of the prism is set to 32°. Water is put on the layer 2. The color bar is linearly divided from cold to warm, depending on the value of Nwm(375, 0). (b) Enlarged view of the area surrounded by the white frame in Fig. 2(a). The solid red, blue, and black circles denote experimental conditions for the WM chips (i), (ii), and (iii), respectively, while the white square denotes the ideally optimized condition for WM excitation.
Fig. 3
Fig. 3 Nsp(375, 0), calculated for the SPR chip, as a function of thickness of the Al layer and base angle ϕ of the prism. Water is on a 5-nm Al2O3 layer put on the Al layer. The solid green circle denotes the experimental condition for the SPR chip, while the white square denotes the ideally optimized condition for SPR excitation.
Fig. 4
Fig. 4 Light intensity of the LED, measured as a function of λ. Broken red:Is (λ) for s-polarized light, solid blue: Ip(λ) for p-polarized light. Note that the two curves overlap each other.
Fig. 5
Fig. 5 Fluorescence intensities measured using the WM chips (i) – (iii) and the SPR chip. The solid triangles represent the average of fluorescence intensities from QD solutions μq, while the open circles represent the average from water μw. The standard deviations of fluorescence intensities, represented by vertical bars, are larger for the QD solution than for the water.
Fig. 6
Fig. 6 Nwm(λ, 0) and Nsp(λ, 0) calculated as a function of λ. Solid red: WM chip (i), dashed dotted blue: WM chip (ii), dashed double-dotted black: WM chip (iii), broken green: SPR chip.
Fig. 7
Fig. 7 Integrand in the right side of Eq. (3), d(λ)N(λ, 0)I(λ)η(λ), as a function of λ. To calculate the relative total fluorescence intensity F, each curve is integrated with respect to λ. Solid red: WM chip (i), dashed dotted blue: WM chip (ii), dashed double-dotted black: WM chip (iii), broken green: SPR chip. Only in this figure, λ is treated as dimensionless.
Fig. 8
Fig. 8 Effective fluorescence intensity, μq - μw, for the WM chips (i) – (iii) and the SPR chip as a function of F. Vertical bars show the standard deviations. Solid circles: measured, open squares: estimated for the ideally optimized chips.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N( λ,z )= | E( λ,z ) E 0 ( λ ) | 2 ,
θ=φ+ sin 1 ( cosφ n p ).
F=c× 0 360 400 ( N(λ,0) e 2 d(λ) z I(λ)η( λ ) )dλ dz = c 2 × 360 400 ( d(λ)N(λ,0)I(λ)η( λ ) )dλ ,
d wm (λ)= λ 2π ( n p sinθ) 2 n w 2
d sp (λ)= λ 2π ε Al ε w ε Al + ε w ε w ,

Metrics