Abstract

The observation of retinal cellular structures is fundamental to the understanding of eye pathologies. However, except for rods and cones, most of the retinal microstructures are weakly reflective and thus difficult to image with state of the art reflective optical imaging techniques such as optical coherence tomography. Recently, we demonstrated the possibility of obtaining the phase contrast of retinal cells in the eye using oblique illumination of the retina. Indeed, by illuminating the eye with incoherent oblique illumination, we obtain a secondary oblique illumination from the backscattered light which can then be used to obtain phase contrast in an effective transmission-like configuration. In this technique, a weak phase signal is modulated over an intense background. Maximizing this phase contrast is thus crucial for the image quality. Here, we investigate the parameters that affect phase contrast by modelling image formation with the backscattered light. We find that the key parameter for maximizing contrast is the intensity profile of the backscattered light. Specifically, the gradient of the profile is found to be proportional to the phase contrast. We validate the model by comparing simulations with experimental results on ex-vivo retina samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging translucent cell bodies in the living mouse retina without contrast agents

A. Guevara-Torres, D. R. Williams, and J. B. Schallek
Biomed. Opt. Express 6(6) 2106-2119 (2015)

Contrast improvement of confocal retinal imaging by use of phase-correcting plates

Stephen A. Burns, Susana Marcos, Ann E. Elsner, and Salvador Bara
Opt. Lett. 27(6) 400-402 (2002)

Volumetric fluorescence retinal imaging in vivo over a 30-degree field of view by oblique scanning laser ophthalmoscopy (oSLO)

Lei Zhang, Weiye Song, Di Shao, Sui Zhang, Manishi Desai, Steven Ness, Sayon Roy, and Ji Yi
Biomed. Opt. Express 9(1) 25-40 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal Imaging and Image Analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
    [Crossref] [PubMed]
  3. J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
    [Crossref] [PubMed]
  4. A. Guevara-Torres, D. R. Williams, and J. B. Schallek, “Imaging translucent cell bodies in the living mouse retina without contrast agents,” Biomed. Opt. Express 6(6), 2106–2119 (2015).
    [Crossref] [PubMed]
  5. W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
    [Crossref] [PubMed]
  6. D. Cunefare, R. F. Cooper, B. Higgins, D. F. Katz, A. Dubra, J. Carroll, and S. Farsiu, “Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images,” Biomed. Opt. Express 7(5), 2036–2050 (2016).
    [Crossref] [PubMed]
  7. Y. N. Sulai, D. Scoles, Z. Harvey, and A. Dubra, “Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope,” J. Opt. Soc. Am. A 31(3), 569–579 (2014).
    [Crossref] [PubMed]
  8. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
    [Crossref] [PubMed]
  9. T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).
    [Crossref] [PubMed]
  10. E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
    [Crossref] [PubMed]
  11. Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
    [Crossref] [PubMed]
  12. T. Laforest, D. Carpentras, M. Künzi, L. Kowalczuk, F. Behar-Cohen, and C. Moser, “A new microscopy for imaging retinal cells,” arXiv:1712.08472 (2017).
  13. T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9(12), 1195–1197 (2012).
    [Crossref] [PubMed]
  14. J. David Giese, T. N. Ford, and J. Mertz, “Fast volumetric phase-gradient imaging in thick samples,” Opt. Express 22(1), 1152–1162 (2014).
    [Crossref] [PubMed]
  15. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
    [Crossref] [PubMed]
  16. L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
    [Crossref] [PubMed]
  17. Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
    [Crossref] [PubMed]
  18. S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009).
    [Crossref] [PubMed]
  19. H. Lu, J. Chung, X. Ou, and C. Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast,” Opt. Express 24(22), 25345–25361 (2016).
    [Crossref] [PubMed]
  20. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28(6), 1061–1077 (1989).
    [Crossref] [PubMed]
  21. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
    [Crossref] [PubMed]
  22. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
    [Crossref] [PubMed]
  23. M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
    [Crossref] [PubMed]
  24. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
    [Crossref]

2017 (2)

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (2)

2014 (4)

2013 (1)

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).
[Crossref] [PubMed]

2012 (2)

2010 (2)

M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal Imaging and Image Analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
[Crossref]

2009 (2)

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref] [PubMed]

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009).
[Crossref] [PubMed]

2008 (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

2007 (1)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

2003 (1)

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
[Crossref] [PubMed]

1998 (1)

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

1995 (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref] [PubMed]

1989 (1)

Abràmoff, M. D.

M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal Imaging and Image Analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
[Crossref] [PubMed]

Amos, W. B.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
[Crossref]

Boppart, S. A.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Bouma, B.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Burns, S. A.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).
[Crossref] [PubMed]

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref] [PubMed]

Carroll, J.

Cattermole, D. M.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
[Crossref] [PubMed]

Chu, K. K.

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9(12), 1195–1197 (2012).
[Crossref] [PubMed]

Chui, T. Y.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).
[Crossref] [PubMed]

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref] [PubMed]

Chung, J.

Chung, M. M.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Cooper, R. F.

Cunefare, D.

David Giese, J.

Delori, F. C.

Drexler, W.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

Dubra, A.

Farsiu, S.

Fischer, W.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Foja, C.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Ford, T. N.

J. David Giese, T. N. Ford, and J. Mertz, “Fast volumetric phase-gradient imaging in thick samples,” Opt. Express 22(1), 1152–1162 (2014).
[Crossref] [PubMed]

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9(12), 1195–1197 (2012).
[Crossref] [PubMed]

Franze, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Friebel, M.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref] [PubMed]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Garvin, M. K.

M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal Imaging and Image Analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
[Crossref] [PubMed]

Gast, T. J.

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
[Crossref]

Granger, C. E.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Grosche, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Guck, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Guevara-Torres, A.

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref] [PubMed]

Harvey, Z.

Helfmann, J.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref] [PubMed]

Higgins, B.

Hunter, J. J.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Katz, D. F.

Kawakami, T.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
[Crossref]

Kurokawa, K.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

Latchney, L. R.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Laufer, J.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
[Crossref] [PubMed]

Lee, J. J.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

Liu, S.

Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
[Crossref] [PubMed]

Lu, H.

Mehta, S. B.

Meinke, M.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref] [PubMed]

Mertz, J.

J. David Giese, T. N. Ford, and J. Mertz, “Fast volumetric phase-gradient imaging in thick samples,” Opt. Express 22(1), 1152–1162 (2014).
[Crossref] [PubMed]

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9(12), 1195–1197 (2012).
[Crossref] [PubMed]

Miller, D. T.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

Müller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref] [PubMed]

Netz, U.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref] [PubMed]

Nozato, K.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Ou, X.

Pflibsen, K. P.

Pitris, C.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Reichelt, S.

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
[Crossref] [PubMed]

Reichenbach, A.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref] [PubMed]

Rossi, E. A.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Saito, K.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Schallek, J. B.

Schild, D.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Schinkinger, S.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Schwarz, C.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref] [PubMed]

Scoles, D.

Sharma, R.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Sheppard, C. J.

Skatchkov, S. N.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Sonka, M.

M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal Imaging and Image Analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
[Crossref] [PubMed]

Southern, J. F.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Sulai, Y. N.

Tearney, G. J.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Tian, L.

Travis, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
[Crossref]

Uckermann, O.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

Vannasdale, D. A.

Waller, L.

Walters, S.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Wang, J.

Williams, D. R.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

A. Guevara-Torres, D. R. Williams, and J. B. Schallek, “Imaging translucent cell bodies in the living mouse retina without contrast agents,” Biomed. Opt. Express 6(6), 2106–2119 (2015).
[Crossref] [PubMed]

Yang, C.

Yang, Q.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Zhang, F.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

Zhang, J.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Ann. N. Y. Acad. Sci. (1)

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

IEEE Rev. Biomed. Eng. (1)

M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal Imaging and Image Analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
[Crossref] [PubMed]

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[Crossref] [PubMed]

J. Microsc. (1)

W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210(2), 166–175 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Methods (1)

T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9(12), 1195–1197 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Spectrosc. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical Properties of Human Sclera in Spectral Range 370–2500 nm,” Opt. Spectrosc. 109(2), 197–204 (2010).
[Crossref]

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. U.S.A. 104(20), 8287–8292 (2007).
[Crossref] [PubMed]

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).
[Crossref] [PubMed]

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

Other (1)

T. Laforest, D. Carpentras, M. Künzi, L. Kowalczuk, F. Behar-Cohen, and C. Moser, “A new microscopy for imaging retinal cells,” arXiv:1712.08472 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Method for obtaining oblique transmission illumination in an eye sample. Light passes through the retina and it is backscattered from the retina pigmented epithelium (RPE) and choroid. This backscattered light results in a new illumination source which acts effectively as a transmission-like imaging system as illustrated in (b) Transmission setup (from [15]) for phase contrast obtained through oblique illumination.
Fig. 2
Fig. 2 (a-d) illumination function in the case of linear, linear plus white noise, piecewise linear and sinusoidal profiles. b) and d) have been obtained for α=1. The dashed circle represents the size of the pupil function. (e-h) respective transfer functions. (i-n) subtractions of the obtained transfer function and the transfer function obtained for S 0 (perfectly linear case). (o-p) error between S i and S 0 . and between g i and g 0 in case of sinusoidal and noisy illumination function. In o), the blue curve has been averaged and the dashed curves represent the mean value plus or minus the standard deviation.
Fig. 3
Fig. 3 Simulations for a 70° illumination of a RPE sample on choroid.(a) Profile of the backscattered light in the Fourier plane and (b) illustration of the illumination and backscattered light. We notice that the profile is approximately linear close to the center.
Fig. 4
Fig. 4 (a) Imaging system used for system validation. Illumination can be provided in reflection, using illumination S1, or in transmission, using illumination S2. The sensor of the Sample Camera is conjugated with the object plane, while the pupil camera is conjugated with its Fourier plane (FP). (b) pupil image in case of choroid sample illuminated in backreflection, (c) its cross section and (d) its odd part. The odd part appears to be more linear than its original profile.
Fig. 5
Fig. 5 Experimental validation of the model. (a) Phase image of the USAF target and the region of interest highlighted with a rectangle. (b-d) pupil function for 3 different illumination cases obtained with a 0.25 NA objective. (e-g) bars of the region of interest in the USAF target for the same illumination condition. We observe that, as the illumination function becomes steeper (and so r larger), the contrast increases. (h) normalized contrast versus normalized r value. Each data point is obtained with a different value of r. Contrast values are obtained from an average of 100 images. The colored triangles represent the values from the corresponding images. We observe that the experimental data follow the theoretical curve except for small values of r. (i) cross section of the target images.
Fig. 6
Fig. 6 (a) phase image of the retinal sample and the section (green bar) used to calculate the contrast. (b) Pupil image. (c) Normalized contrast versus normalized r. The magnitude error in contrast comes from different analyzed areas of the same sample. This is expected to come from the contribution of back diffracted light which varies across the sample. The curve also shows that maximizing r brings, in general, a better contrast.

Tables (1)

Tables Icon

Table 1 Scattering parameters for λ = 633 nm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ^ ( u )=B( S( u ) )δ( k )+H( u,S( u ) ) μ ^ ( u )+G( u,S( u ) ) ϕ ^ ( u )
{ B( S( u' ) )=  S( u ) | P( u ) | 2 d 2 u H( u,S( u ) )= [ P( u )P( u+u )S( u )+P( u )P( uu )S( u ) ]  d 2 u G( u,S( u ) )=i [ P( u )P( u+u )S( u )P( u )P( uu )S( u ) ]  d 2 u
{ B( S( u ) )=  S ev ( u ) | P( u ) | 2 d 2 u H( u,S( u ) )=2 P( u )P( u+u ) S ev ( u )  d 2 u G( u,S( u ) )=2i P( u )P( u+u ) S odd ( u )  d 2 u
S l ( u )=q+ m u x
{ B( S l ( u ) )= qB( S 0 ( u ) ) H( u, S l ( u ) )=q H( u, S 0 ( u ) ) G( u, S l ( u ) )=m G( u, S 0 ( u ) )
{ h( u )= H( u, S l ( u ) ) B( S l ( u ) ) = H( u, S 0 ( u ) ) B( S 0 ( u ) ) g( u )= G( u, S l ( u ) ) r B( S l ( u ) ) = G( u, S 0 ( u ) ) B( S 0 ( u ) )
J ^ ( u,r )= I ^ ( u ) B( S l ( u ) ) =δ( u )+h( u ) μ ^ ( u )+rg( u ) ϕ ^ ( u )
{ r= Slope[ S odd ( u ) ] Mean[ S ev ( u ) ]   S odd ( u )= S( u )S( u ) 2 S ev ( u )= S( u )+S( u ) 2
E[ S i ( u ), S j ( u ) ]= k abs( S i ( u ) S j ( u )) k abs( S i ( u ) )+abs( S j ( u ) )
{ S noise ( u )= S 0 ( u )+αN( u ) S sin ( u )=1+Sin( απu x )
J s ( x )= I s ( x ) Low{ I s ( x ) }

Metrics