Abstract

The generation and manipulation of microbubbles by means of temperature gradients induced by low power laser radiation is presented. A laser beam (λ = 1064 nm) is divided into two equal parts and coupled to two multimode optical fibers. The opposite ends of each fiber are aligned and separated a distance D within an ethanol solution. Previously, silver nanoparticles were photo deposited on the optical fibers ends. Light absorption at the nanoparticles produces a thermal gradient capable of generating a microbubble at the optical fibers end in non-absorbent liquids. The theoretical and experimental studies carried out showed that by switching the thermal gradients, it is possible to generate forces in opposite directions, causing the migration of microbubbles from one fiber optic tip to another. Marangoni force induced by surface tension gradients in the bubble wall is the driving force behind the manipulation of microbubbles. We estimated a maximum Marangoni force of 400nN for a microbubble with a radius of 110 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microbubble generation using fiber optic tips coated with nanoparticles

Reinher Pimentel-Domínguez, Juan Hernández-Cordero, and Roberto Zenit
Opt. Express 20(8) 8732-8740 (2012)

Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe

R. S. Taylor and C. Hnatovsky
Opt. Express 12(5) 916-928 (2004)

Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation

Xiaobo Xing, Jiapeng Zheng, Chao Sun, Fengjia Li, Debin Zhu, Liang Lei, Xiang Cai, and Ting Wu
Opt. Express 21(26) 31862-31871 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
    [Crossref] [PubMed]
  2. K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems,” Microsc. Thermophys. Eng. 3(3), 169–182 (1999).
    [Crossref]
  3. Z. B. Wu and W. R. Hu, “Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers,” Acta Mech. 223(3), 609–626 (2011).
  4. J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
    [Crossref]
  5. J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
    [Crossref]
  6. K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
    [Crossref] [PubMed]
  7. K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
    [Crossref]
  8. L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
    [Crossref] [PubMed]
  9. W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).
  10. A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
    [Crossref] [PubMed]
  11. A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
    [Crossref] [PubMed]
  12. P. Prentice, M. Macdonald, T. Frank, A. Cuschieri, G. Spalding, W. Sibbett, P. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004).
    [Crossref] [PubMed]
  13. V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
    [Crossref]
  14. J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
    [Crossref]
  15. X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
    [Crossref] [PubMed]
  16. S. Chakraborty, “Electrocapillary,” in Encyclopedia of microfluidics and nanofluidics, L. Dongqing, ed. (Springer, 2015).
  17. X. Qu and H. Qiu, “Bubbles dynamics under a horizontal micro heater array,” J. Micromech. Microeng. 19(9), 095008 (2009).
    [Crossref]
  18. N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
    [Crossref]
  19. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush, “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation,” Opt. Express 25(5), 5232–5243 (2017).
    [Crossref] [PubMed]
  20. J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
    [Crossref] [PubMed]
  21. P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
    [Crossref]
  22. J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
    [Crossref] [PubMed]
  23. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  24. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
    [Crossref] [PubMed]
  25. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011).
    [Crossref] [PubMed]
  26. E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
    [Crossref] [PubMed]
  27. Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
    [Crossref] [PubMed]
  28. S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
    [Crossref]
  29. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1999).
  30. J. R. Vélez-Cordero and J. Hernández-Cordero, “On the motion of carbon nanotube clusters near optical fiber tips: thermophoresis, radiative pressure and convection effects,” Langmuir 31(36), 10066–10075 (2015).
    [Crossref] [PubMed]
  31. R. S. Subramanian and R. Balasubramanian, The motion of bubbles and drops in reduced gravity, (Cambridge University, 2001).
  32. J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
    [Crossref]
  33. G. Vázquez, E. Alvarez, and J. M. Navaza, “Surface tension of alcohol + water from 20 to 50 °C,” J. Chem. Eng. Data 40(3), 611–614 (1995).
    [Crossref]
  34. L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
    [Crossref] [PubMed]
  35. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
    [Crossref]

2017 (4)

J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
[Crossref]

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref] [PubMed]

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref] [PubMed]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush, “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation,” Opt. Express 25(5), 5232–5243 (2017).
[Crossref] [PubMed]

2016 (2)

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

2015 (2)

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

J. R. Vélez-Cordero and J. Hernández-Cordero, “On the motion of carbon nanotube clusters near optical fiber tips: thermophoresis, radiative pressure and convection effects,” Langmuir 31(36), 10066–10075 (2015).
[Crossref] [PubMed]

2014 (2)

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

2013 (3)

S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
[Crossref]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

2012 (3)

R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
[Crossref] [PubMed]

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

2011 (5)

Z. B. Wu and W. R. Hu, “Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers,” Acta Mech. 223(3), 609–626 (2011).

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011).
[Crossref] [PubMed]

2009 (1)

X. Qu and H. Qiu, “Bubbles dynamics under a horizontal micro heater array,” J. Micromech. Microeng. 19(9), 095008 (2009).
[Crossref]

2008 (1)

L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
[Crossref] [PubMed]

2007 (1)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

2006 (2)

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

2005 (1)

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

2004 (1)

1999 (1)

K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems,” Microsc. Thermophys. Eng. 3(3), 169–182 (1999).
[Crossref]

1997 (1)

J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
[Crossref]

1995 (1)

G. Vázquez, E. Alvarez, and J. M. Navaza, “Surface tension of alcohol + water from 20 to 50 °C,” J. Chem. Eng. Data 40(3), 611–614 (1995).
[Crossref]

Akinwande, D.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Albloushi, H.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Almansouri, A.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Alvarez, E.

G. Vázquez, E. Alvarez, and J. M. Navaza, “Surface tension of alcohol + water from 20 to 50 °C,” J. Chem. Eng. Data 40(3), 611–614 (1995).
[Crossref]

Angelsky, O. V.

Asano, T.

K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
[Crossref]

Attinger, D.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Bartkiewicz, S.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref] [PubMed]

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Bekshaev, A. Ya.

Beltran-Pérez, G.

Bezuglyi, B. A.

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

Cabrini, S.

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Campbell, P.

Cegla, F. B.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Chávez, F.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Chung, S. K.

J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
[Crossref]

Cojoc, D.

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Coronado, E. A.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Cuschieri, A.

Deguchi, S.

S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
[Crossref]

Dholakia, K.

Di Fabrizio, E.

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Dradrach, K.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Dunn, A. K.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Encina, E. R.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Felipe, C.

Ferrari, E.

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Fornasiero, D.

L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
[Crossref] [PubMed]

Frank, T.

Frenz, M.

Friend, J.

J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

Garbin, V.

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Goiz, O.

Gómez-Pavón, L. C.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Hanson, S. G.

Hashmi, A.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Hatano, S.

K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
[Crossref]

Heiman, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Hernández-Cordero, J.

J. R. Vélez-Cordero and J. Hernández-Cordero, “On the motion of carbon nanotube clusters near optical fiber tips: thermophoresis, radiative pressure and convection effects,” Langmuir 31(36), 10066–10075 (2015).
[Crossref] [PubMed]

R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
[Crossref] [PubMed]

Hiraki, H.

S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
[Crossref]

Holsteyns, F.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Hong, J.

J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
[Crossref]

Hu, W. R.

Z. B. Wu and W. R. Hu, “Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers,” Acta Mech. 223(3), 609–626 (2011).

Ivanova, N. A.

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

Jaeger, M.

Jones, P. H.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Kalantar-zadeh, K.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Kao, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Khoshmanesh, K.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Kim, C.

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

Kitz, M.

Kontush, S. M.

Kuzin, E.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Li, W.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Lin, L.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Lippert, A.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Lowe, M.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Macdonald, M.

Maksimyak, A. P.

Maksimyak, P. P.

Mao, Z.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Mettin, R.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Miniewicz, A.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref] [PubMed]

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Nagayama, K.

K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
[Crossref]

Navaza, J. M.

G. Vázquez, E. Alvarez, and J. M. Navaza, “Surface tension of alcohol + water from 20 to 50 °C,” J. Chem. Eng. Data 40(3), 611–614 (1995).
[Crossref]

Nelson, W. C.

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

Nowak, T.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Orlikowska, H.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref] [PubMed]

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

Ortega-Mendoza, J. G.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Padilla-Vivanco, A.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Parkinson, L.

L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
[Crossref] [PubMed]

Peng, X.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Pérez-Sánchez, G. F.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

Perillo, E. P.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Pimentel-Domínguez, R.

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Preisser, S.

Prentice, P.

Proietti, R. Z.

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Qiu, H.

X. Qu and H. Qiu, “Bubbles dynamics under a horizontal micro heater array,” J. Micromech. Microeng. 19(9), 095008 (2009).
[Crossref]

Qu, X.

X. Qu and H. Qiu, “Bubbles dynamics under a horizontal micro heater array,” J. Micromech. Microeng. 19(9), 095008 (2009).
[Crossref]

Quintard, C.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref] [PubMed]

Rajeeva, B. B.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Ralston, J.

L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
[Crossref] [PubMed]

Ramos, J. I.

J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
[Crossref]

Ramos-Garcia, R.

Reilly-Collette, M.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Saffari, N.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Sedev, R.

L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
[Crossref] [PubMed]

Seo, J.

J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
[Crossref]

Shin, J. H.

J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
[Crossref]

Sibbett, W.

Soffe, R.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Spalding, G.

Stefani, F. D.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Stride, E.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Takahashi, K.

K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems,” Microsc. Thermophys. Eng. 3(3), 169–182 (1999).
[Crossref]

K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
[Crossref]

Takahashi, S.

S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
[Crossref]

Tanimura, S.

S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
[Crossref]

Thalmann, G. N.

Thiemann, A.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Tien, C. L.

K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems,” Microsc. Thermophys. Eng. 3(3), 169–182 (1999).
[Crossref]

Torres-Turiján, J.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Toxqui-Quitl, C.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Vázquez, G.

G. Vázquez, E. Alvarez, and J. M. Navaza, “Surface tension of alcohol + water from 20 to 50 °C,” J. Chem. Eng. Data 40(3), 611–614 (1995).
[Crossref]

Vélez-Cordero, J. R.

J. R. Vélez-Cordero and J. Hernández-Cordero, “On the motion of carbon nanotube clusters near optical fiber tips: thermophoresis, radiative pressure and convection effects,” Langmuir 31(36), 10066–10075 (2015).
[Crossref] [PubMed]

Villegas-Hernández, D.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Wang, X.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Warren, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Weng, J. G.

K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems,” Microsc. Thermophys. Eng. 3(3), 169–182 (1999).
[Crossref]

Wetterwald, A.

Wu, Z. B.

Z. B. Wu and W. R. Hu, “Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers,” Acta Mech. 223(3), 609–626 (2011).

Xi, X.

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Xie, Y.

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref] [PubMed]

Xu, J.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Yeo, L.

J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

Yi, P.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Yogeesh, M. N.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Yoshino, K.

K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
[Crossref]

Yu, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Zaca-Morán, P.

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref] [PubMed]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Zenit, R.

Zhao, C.

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref] [PubMed]

Zheng, Y.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Acta Mech. (1)

Z. B. Wu and W. R. Hu, “Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers,” Acta Mech. 223(3), 609–626 (2011).

Appl. Math. Model. (1)

J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
[Crossref]

Appl. Phys. Lett. (2)

S. Deguchi, S. Takahashi, H. Hiraki, and S. Tanimura, “Direct measurement of force exerted during single microbubble generation,” Appl. Phys. Lett. 102(8), 084101 (2013).
[Crossref]

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Biomed. Opt. Express (1)

J. Adhes. Sci. Technol. (1)

W. C. Nelson and C. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

J. Chem. Eng. Data (1)

G. Vázquez, E. Alvarez, and J. M. Navaza, “Surface tension of alcohol + water from 20 to 50 °C,” J. Chem. Eng. Data 40(3), 611–614 (1995).
[Crossref]

J. Colloid Interface Sci. (1)

L. Parkinson, R. Sedev, D. Fornasiero, and J. Ralston, “The terminal rise velocity of 10-100 µm diameter bubbles in water,” J. Colloid Interface Sci. 322(1), 168–172 (2008).
[Crossref] [PubMed]

J. Micromech. Microeng. (2)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

X. Qu and H. Qiu, “Bubbles dynamics under a horizontal micro heater array,” J. Micromech. Microeng. 19(9), 095008 (2009).
[Crossref]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre-Gaussian beams,” Jpn. J. Appl. Phys. 44(7B), 5773–5776 (2005).
[Crossref]

Lab Chip (1)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Langmuir (1)

J. R. Vélez-Cordero and J. Hernández-Cordero, “On the motion of carbon nanotube clusters near optical fiber tips: thermophoresis, radiative pressure and convection effects,” Langmuir 31(36), 10066–10075 (2015).
[Crossref] [PubMed]

Microsc. Thermophys. Eng. (1)

K. Takahashi, J. G. Weng, and C. L. Tien, “Marangoni effect in microbubble systems,” Microsc. Thermophys. Eng. 3(3), 169–182 (1999).
[Crossref]

Nano Lett. (1)

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-Pen Lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref] [PubMed]

Nanoscale (2)

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Laser Technol. (1)

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83(2), 647–704 (2011).
[Crossref]

Sci. Rep. (2)

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles,” Sci. Rep. 6(1), 34787 (2016).
[Crossref] [PubMed]

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. H. Shin, J. Seo, J. Hong, and S. K. Chung, “Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects,” Sens. Actuators B Chem. 246, 415–420 (2017).
[Crossref]

Sensors (Basel) (1)

J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors (Basel) 14(12), 18701–18710 (2014).
[Crossref] [PubMed]

Tech. Phys. Lett. (1)

N. A. Ivanova and B. A. Bezuglyi, “Optical thermocapillary bubble trap,” Tech. Phys. Lett. 32(10), 854–856 (2006).
[Crossref]

Ultrasonics (1)

X. Xi, F. B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, and A. Lippert, “Study on the bubble transport mechanism in an acoustic standing wave field,” Ultrasonics 51(8), 1014–1025 (2011).
[Crossref] [PubMed]

Other (4)

S. Chakraborty, “Electrocapillary,” in Encyclopedia of microfluidics and nanofluidics, L. Dongqing, ed. (Springer, 2015).

K. Takahashi, K. Yoshino, S. Hatano, K. Nagayama, and T. Asano, “Novel applications of thermally controlled microbubble driving system,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 286–289.
[Crossref]

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1999).

R. S. Subramanian and R. Balasubramanian, The motion of bubbles and drops in reduced gravity, (Cambridge University, 2001).

Supplementary Material (3)

NameDescription
» Visualization 1       Manipulation of a microbubble between two horizontally opposed optical fibers due to the switching of the temperature gradients
» Visualization 2       Manipulation of a microbubble in the + z and -z direction between two optically opposed and off-axis optical fibers 33 °
» Visualization 3       Manipulation of a microbubble in the + z and -z direction between two optically opposed and off-axis optical fibers 43 °

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup for photodeposition AgNPs at the core of the optical fibers.
Fig. 2
Fig. 2 Experimental setup for the generation and manipulation of microbubbles. (a) Optical fibers vertically opposed. (b) Optical fibers horizontally opposed.
Fig. 3
Fig. 3 Sequence of birth (a) and growth of a microbubble (b-d) adhered to the tip of an optical fiber. Bright areas represent scatter light picked up by the camera.
Fig. 4
Fig. 4 Snap shots of a travelling microbubble in the + z direction between two opposed optical fibers. The bubble is generated in the lower fiber and attracted towards the upper fiber.
Fig. 5
Fig. 5 Snap shots of a travelling microbubble in the -z direction between two opposed optical fibers. The bubble is generated in the upper fiber and attracted towards the lower fiber.
Fig. 6
Fig. 6 Manipulation of a microbubble between two horizontally opposed optical fibers (a) due to the switching of the temperature gradients (see Visualization 1). Manipulation of a microbubble in the + z and -z direction between two vertically opposed and off-axis optical fibers (a) 33 ° (see Visualization 2) and (b) 43 ° (see Visualization 3) respectively.
Fig. 7
Fig. 7 (a) Configuration used to calculate the temperature spatial distribution using COMSOL. The fiber is placed into the cell containing ethanol. (b) Temperature profile from the fiber to the bottom of the cell which in this case r coincides with the z axis.
Fig. 8
Fig. 8 Microbubble radius as function of time.
Fig. 9
Fig. 9 (a) Displacement of a microbubble in the + z direction, (b) displacement of a microbubble towards –z direction and (c) displacement of microbubble when the optical fibers are off-axis.
Fig. 10
Fig. 10 Marangoni force on a microbubble (with radius R = 110 μm, heat source is placed at r = 0) as a function of the distance (r) between heat source and the microbubble when the heat source is placed at the lower fiber.
Fig. 11
Fig. 11 Microbubble displacement velocity as a function of the distance between the heat source and the microbubble. (a) Dots correspond to experimental data and continuous line corresponds to fittings. (b) Triangles correspond to Marangoni and terminal’s velocities as a result to combining experimental results and continuous lines correspond to fitting of UM and UT.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T( r )= T 0 +ΔTexp( r r D ),
F M =2π R 2 T dσ dT ,
F B = 4 3 π ρ l g R 3 ,
F G = 4 3 π ρ b g R 3 ,
F D =6πμRU,
F T = F B + F D + F G + F M ,
U= U M + U T ,
U T = 2g R 2 9μ ( ρ b ρ l ),
U M = dσ dT R 2μ r D ΔTexp( r r D ).
U M = dσ dT R 2μ r D ΔTexp( r r D ).

Metrics