Abstract

The spin Hall effect (SHE) of light beams reflected from an air-chiral interface are investigated systematically. Due to the intrinsic chiral asymmetry of the medium, a horizontally polarized incident Gaussian beam will undergo asymmetric spin splitting, i.e., both the displacements and energies of two spin components of the reflected beam are different. One spin component can undergo large displacement near points of |rpp| = |rsp| (rpp and rsp are the Fresnel reflection coefficients), where the reflected beams are almost in circular polarization states. Moreover, for an incident beam carrying orbital angular momentum (OAM), the two spin components acquire additional OAM dependent shifts, which attribute to the asymmetric spin splitting. Thus, the asymmetric spin splitting of the reflected beam will vary with the incident OAM. These findings provide a deeper insight into the SHE of light, and they may have potential application in precision metrology.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab

Mengjiang Jiang, Wenguo Zhu, Heyuan Guan, Jianhui Yu, Huihui Lu, Jieyuan Tan, Jun Zhang, and Zhe Chen
Opt. Lett. 42(17) 3259-3262 (2017)

Tunable lateral shifts of the reflected wave on the surface of an anisotropic chiral metamaterial

Yanyan Huang, Zhongwei Yu, Chonggui Zhong, Jinghuai Fang, and Zhengchao Dong
Opt. Mater. Express 7(5) 1473-1485 (2017)

Controllable symmetric and asymmetric spin splitting of Laguerre–Gaussian beams assisted by surface plasmon resonance

Wenguo Zhu, Linqing Zhuo, Mengjiang Jiang, Heyuan Guan, Jianhui Yu, Huihui Lu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Lett. 42(23) 4869-4872 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15(1), 014001 (2013).
    [Crossref]
  2. X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
    [Crossref]
  3. X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
    [Crossref] [PubMed]
  4. S. Grosche, M. Ornigotti, and A. Szameit, “Goos-Hänchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces,” Opt. Express 23(23), 30195–30203 (2015).
    [Crossref] [PubMed]
  5. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  6. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
    [Crossref]
  7. X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
    [Crossref] [PubMed]
  8. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  9. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  10. X. Qiu, L. Xie, X. Liu, L. Luo, Z. Zhang, and J. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Opt. Lett. 41(17), 4032–4035 (2016).
    [Crossref] [PubMed]
  11. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
    [Crossref]
  12. Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance,” Photon. Res. 5(5), 467–472 (2017).
    [Crossref]
  13. W. Zhu, L. Zhuo, M. Jiang, H. Guan, J. Yu, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Controllable symmetric and asymmetric spin splitting of Laguerre-Gaussian beams assisted by surface plasmon resonance,” Opt. Lett. 42(23), 4869–4872 (2017).
    [Crossref] [PubMed]
  14. T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, “Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial,” Opt. Express 24(24), 28113–28121 (2016).
    [Crossref] [PubMed]
  15. M. Jiang, W. Zhu, H. Guan, J. Yu, H. Lu, J. Tan, J. Zhang, and Z. Chen, “Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab,” Opt. Lett. 42(17), 3259–3262 (2017).
    [Crossref] [PubMed]
  16. W. Zhu and W. She, “Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab,” Opt. Lett. 40(13), 2961–2964 (2015).
    [Crossref] [PubMed]
  17. T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
    [Crossref] [PubMed]
  18. W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, and Z. Chen, “Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials,” Photon. Res. 5(6), 684–688 (2017).
    [Crossref]
  19. G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
    [Crossref]
  20. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
    [Crossref] [PubMed]
  21. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  22. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
    [Crossref]
  23. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
    [Crossref]
  24. Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
    [Crossref]
  25. H. Wang and X. Zhang, “Unusual spin Hall effect of a light beam in chiral metamaterials,” Phys. Rev. A 83(5), 053820 (2011).
    [Crossref]
  26. Y. Y. Huang, Z. W. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
    [Crossref]
  27. J. Lekner, “Optical properties of isotropic chiral media,” Pure Appl. Opt. 5(4), 417–443 (1996).
    [Crossref]
  28. L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
    [Crossref]
  29. T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

2018 (1)

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

2017 (6)

2016 (5)

2015 (3)

2014 (1)

Y. Y. Huang, Z. W. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

2013 (2)

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15(1), 014001 (2013).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

2012 (1)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

2011 (3)

G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

H. Wang and X. Zhang, “Unusual spin Hall effect of a light beam in chiral metamaterials,” Phys. Rev. A 83(5), 053820 (2011).
[Crossref]

2010 (1)

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

2009 (2)

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

2008 (1)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

2006 (1)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

2003 (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

1996 (1)

J. Lekner, “Optical properties of isotropic chiral media,” Pure Appl. Opt. 5(4), 417–443 (1996).
[Crossref]

Aiello, A.

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15(1), 014001 (2013).
[Crossref]

Alici, K. B.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15(1), 014001 (2013).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Caglayan, H.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Cai, L.

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

Chen, S.

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

Chen, Z.

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Colak, E.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Dai, X.

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Du, J.

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Gao, L.

Y. Y. Huang, Z. W. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Grosche, S.

Guan, H.

Guo, J.

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Huang, K.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Huang, Y. Y.

Y. Y. Huang, Z. W. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Jiang, M.

Jiang, X.

Kafesaki, M.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Koschny, T.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Lekner, J.

J. Lekner, “Optical properties of isotropic chiral media,” Pure Appl. Opt. 5(4), 417–443 (1996).
[Crossref]

Li, C.

Li, J.

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, “Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial,” Opt. Express 24(24), 28113–28121 (2016).
[Crossref] [PubMed]

Li, Z. F.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Ling, X.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Liu, M.

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

Liu, X.

Liu, Y.

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Lu, H.

Luo, H.

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Luo, L.

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
[Crossref] [PubMed]

X. Qiu, L. Xie, X. Liu, L. Luo, Z. Zhang, and J. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Opt. Lett. 41(17), 4032–4035 (2016).
[Crossref] [PubMed]

T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, “Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial,” Opt. Express 24(24), 28113–28121 (2016).
[Crossref] [PubMed]

Luo, Y.

Mao, H.

G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
[Crossref]

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Ornigotti, M.

Ozbay, E.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Pan, T.

G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
[Crossref]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Qiu, C. W.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Qiu, X.

She, W.

Shu, W.

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Sihvola, A.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Soukoulis, C. M.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Sun, P.

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

Szameit, A.

Tan, J.

Tang, T.

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
[Crossref] [PubMed]

T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, “Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial,” Opt. Express 24(24), 28113–28121 (2016).
[Crossref] [PubMed]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

Wang, B.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

Wang, H.

H. Wang and X. Zhang, “Unusual spin Hall effect of a light beam in chiral metamaterials,” Phys. Rev. A 83(5), 053820 (2011).
[Crossref]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Wen, S.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Xiang, Y.

Xie, L.

Xu, G.

G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
[Crossref]

Yao, J.

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

You, Q.

Yu, J.

Yu, Z. W.

Y. Y. Huang, Z. W. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Zang, T.

G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
[Crossref]

Zhang, J.

Zhang, X.

H. Wang and X. Zhang, “Unusual spin Hall effect of a light beam in chiral metamaterials,” Phys. Rev. A 83(5), 053820 (2011).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, R. K.

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, J.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, X.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Zhou and X. Ling, “Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting,” Opt. Express 24(3), 3025–3036 (2016).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Zhu, W.

Zhuo, L.

Adv. Opt. Mater (1)

T. Tang, J. Li, L. Luo, P. Sun, and J. Yao, “Magneto-Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region,” Adv. Opt. Mater 6(4), 201701212 (2018).

Appl. Phys. Lett. (3)

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009).
[Crossref]

Z. F. Li, R. K. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

J. Electromagn. Waves Appl. (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003).
[Crossref]

J. Opt. (2)

Y. Y. Huang, Z. W. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt. 15(1), 014001 (2013).
[Crossref]

Light Sci. Appl. (1)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Nanotechnology (1)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Photon. Res. (2)

Phys. Rev. A (5)

G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83(5), 053828 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

H. Wang and X. Zhang, “Unusual spin Hall effect of a light beam in chiral metamaterials,” Phys. Rev. A 83(5), 053820 (2011).
[Crossref]

L. Cai, M. Liu, S. Chen, Y. Liu, W. Shu, H. Luo, and S. Wen, “Quantized photonic spin Hall effect in graphene,” Phys. Rev. A 95(1), 013809 (2017).
[Crossref]

Phys. Rev. B (1)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metametrial with Negative Index due to Chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (1)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Pure Appl. Opt. (1)

J. Lekner, “Optical properties of isotropic chiral media,” Pure Appl. Opt. 5(4), 417–443 (1996).
[Crossref]

Rep. Prog. Phys. (1)

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6(1), 30762 (2016).
[Crossref] [PubMed]

Science (1)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of the asymmetric spin splitting of light beam reflected from an air-chiral interface. For a horizontal incident polarization, the two opposite spin components of the reflected beam will undergo asymmetric displacements along yr axis.
Fig. 2
Fig. 2 Dependences of the reflectivity (the first row), the spin-dependent displacements (the second row), and the energy ratio of the reflected RCP and LCP components (the third row) on θ for the cases of к = 0 (the first column), 0.1 (the second column), and 0.49 (the third column), respectively. In our calculations, n = 1.414 and w0 = 100λ.
Fig. 3
Fig. 3 Dependences of the spin-dependent displacements∆ ± on chirality parameter к for (a) к = −1~1and (b)к = −0.1~0.1, respectively. In the calculation, θ = 54°, n = 1.414.
Fig. 4
Fig. 4 The spin-dependent displacements∆ ± (the first and second rows) and the energy ratio between the reflected RCP and LCP components R(the third row) as functions of the incident angle θ for к = 0.1(first column), and of the chirality parameter к for θ = 54°(second column), respectively.
Fig. 5
Fig. 5 The spin-dependent displacements of RCP (red color) and LCP (blue color) components of the reflected beams changing with the average refractive index of the chiral metamaterial n. In our calculations, θ = 50.79°, к = 0.58, and w0 = 100λ.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

r=[ r pp r ps r sp r ss ],
r pp = (1 g 2 )(cos θ + +cos θ )cosθ2g( cos 2 θcos θ + cos θ ) (1+ g 2 )(cos θ + +cos θ )cosθ+2g( cos 2 θ+cos θ + cos θ ) ,
r sp = r ps = 2ig(cos θ + cos θ )cosθ (1+ g 2 )(cos θ + +cos θ )cosθ+2g( cos 2 θ+cos θ + cos θ ) ,
r ss = (1 g 2 )(cos θ + +cos θ )cosθ+2g( cos 2 θcos θ + cos θ ) (1+ g 2 )(cos θ + +cos θ )cosθ+2g( cos 2 θ+cos θ + cos θ ) ,
[ r pp r ps +M k ry / k 0 r sp M k ry / k 0 r ss ],
r ab ( k ix / k 0 )= r ab (0)+ k ix / k 0 r ab ' (0),
E ˜ r ± ={ [ r pp k rx r pp ' k 0 ]i[ r sp k rx r sp ' k 0 M k ry k 0 ] } ϕ ˜ l e ^ r± .
Δ ± ={Im[ r sp * M]±Re[ r pp * M]lRe( r pp * r pp ' + r sp * r sp ' )±lIm( r pp * r sp ' + r sp * r pp ' )}/ W ± k 0 ,
W ± ={ | r pp | 2 +| r sp | 2 ±2Im[ r pp * r sp ] +(|l|+1){| r pp ' | 2 +| r sp ' | 2 ±2Im[ r pp ' * r sp ' ]+ |M | 2 }/ k 0 2 w 0 2 }.

Metrics