Abstract

This paper reports a tunable in-plane optofluidic lens by continuously tuning a silicone oil-air interface from concave to convex using the dielectrophoresis (DEP) force. Two parallel glasses are bonded firmly on two sides by NOA 81(Norland Optical Adhesive 81) spacers, forming an open microfluidic channel. An ITO (indium tin oxide) strip and another unpatterned ITO layer are deposited on two glasses as the top and bottom electrodes. Initially, a capillary concave liquid-air interface is formed at the end of the open channel. Then the DEP force is enabled to continuously deform the interface (lens) from concave to convex. In the experiment, the focal length gradually decreases from about −1 mm to infinite and then from infinite to around + 1 mm when the driving voltage is increased from 0 V to 260 V. Particularly, the longitudinal spherical aberration (LSA) is effectively suppressed to have LSA < 0.04 when the lens is operated in the focusing state. This work is the first study of in-plane tunable lenses using the DEP force and possesses special merits as compared to the other reported tunable lenses that are formed by pumping different liquids or by temperature gradient, such as wide tunability, no need for continuous supply of liquids, low power consumption (~81 nJ per switching) due to the capacitor-type driving, and the use of only one type of liquid. Besides, its low aberration makes it favorable for light manipulation in microfluidic networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Variable focus dielectric liquid droplet lens

Chih-Cheng Cheng, C. Alex Chang, and J. Andrew Yeh
Opt. Express 14(9) 4101-4106 (2006)

Optofluidic lenses with horizontal-to-vertical aspect ratios in the subunit regime

Shravani Prasad, Michelle Del Rosso, Julie R. Vale, and Christopher M. Collier
Appl. Opt. 57(19) 5474-5482 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  4. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
    [Crossref] [PubMed]
  5. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  6. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluidics 4(1-2), 3–16 (2008).
    [Crossref] [PubMed]
  7. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
    [Crossref] [PubMed]
  8. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
    [Crossref] [PubMed]
  9. J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
    [Crossref] [PubMed]
  10. C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
    [Crossref] [PubMed]
  11. Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab Chip 12(19), 3810–3815 (2012).
    [Crossref] [PubMed]
  12. Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
    [Crossref] [PubMed]
  13. W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
    [Crossref] [PubMed]
  14. P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
    [Crossref]
  15. S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
    [Crossref] [PubMed]
  16. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [Crossref] [PubMed]
  17. Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
    [Crossref] [PubMed]
  18. Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
    [Crossref]
  19. N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
    [Crossref] [PubMed]
  20. N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
    [Crossref] [PubMed]
  21. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [Crossref] [PubMed]
  22. H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
    [Crossref] [PubMed]
  23. C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
    [Crossref] [PubMed]
  24. N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
    [Crossref] [PubMed]
  25. C. Fang, B. Dai, Q. Xu, R. Zhuo, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave,” Opt. Express 25(2), 888–897 (2017).
    [Crossref] [PubMed]
  26. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
    [Crossref] [PubMed]
  27. H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
    [Crossref] [PubMed]
  28. Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
    [Crossref] [PubMed]
  29. C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  30. F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
    [Crossref]
  31. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  32. S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  33. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  34. S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
    [Crossref] [PubMed]
  35. H. Ren and S.-T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
    [Crossref] [PubMed]
  36. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  37. S. Xu, Y.-J. Lin, and S.-T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [Crossref] [PubMed]
  38. H. Ren, S. Xu, D. Ren, and S.-T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
    [Crossref] [PubMed]
  39. S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip 9(9), 1236–1242 (2009).
    [Crossref] [PubMed]
  40. T. B. Jones, “Liquid dielectrophoresis on the microscale,” J. Electrost. 51, 290–299 (2001).
    [Crossref]
  41. Y. Zhu and K. Petkovic-Duran, “Capillary flow in microchannels,” Microfluid. Nanofluidics 8(2), 275–282 (2010).
    [Crossref]
  42. L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
    [Crossref]
  43. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
    [Crossref] [PubMed]

2017 (4)

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

C. Fang, B. Dai, Q. Xu, R. Zhuo, Q. Wang, X. Wang, and D. Zhang, “Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave,” Opt. Express 25(2), 888–897 (2017).
[Crossref] [PubMed]

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

2016 (3)

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref] [PubMed]

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

2014 (2)

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

2013 (2)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

2012 (3)

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab Chip 12(19), 3810–3815 (2012).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

2011 (7)

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[Crossref] [PubMed]

H. Ren, S. Xu, D. Ren, and S.-T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

2010 (4)

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

Y. Zhu and K. Petkovic-Duran, “Capillary flow in microchannels,” Microfluid. Nanofluidics 8(2), 275–282 (2010).
[Crossref]

2009 (4)

S. Xu, Y.-J. Lin, and S.-T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip 9(9), 1236–1242 (2009).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

2008 (4)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

2007 (4)

C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[Crossref] [PubMed]

2005 (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

2001 (1)

T. B. Jones, “Liquid dielectrophoresis on the microscale,” J. Electrost. 51, 290–299 (2001).
[Crossref]

Asundi, A. K.

Baret, J.-C.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Chan, C. Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Chan, H. L. W.

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Chan, N. Y.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Chen, B.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Chen, H. F.

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref] [PubMed]

Chen, T. N.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

Chen, W.

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

Cheng, C.-C.

Chien, C.-C.

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

Chin, L. K.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Chiu, Y.

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

Dai, B.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Emery, T.

Erickson, D.

Fan, S.-K.

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip 9(9), 1236–1242 (2009).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Fang, C.

Fu, X.

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

Guo, F.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Guo, S. S.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Hao, Y. L.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hsieh, T.-H.

S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip 9(9), 1236–1242 (2009).
[Crossref] [PubMed]

Hu, L.

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

Huang, T. J.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Jian, A.

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Jones, T. B.

T. B. Jones, “Liquid dielectrophoresis on the microscale,” J. Electrost. 51, 290–299 (2001).
[Crossref]

Juluri, B. K.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Kloss, A.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Kong, T. F.

Krogmann, F.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kurabayashi, K.

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

Lapsley, M. I.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Lee, H. P.

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab Chip 12(19), 3810–3815 (2012).
[Crossref] [PubMed]

Lee, H.-P.

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

Li, L.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Li, Z.

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[Crossref] [PubMed]

Liang, L.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Liebetraut, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Liedberg, B.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Lim, C. S.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Lim, S. P.

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab Chip 12(19), 3810–3815 (2012).
[Crossref] [PubMed]

Lin, C.

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

Lin, C. L.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Lin, D.-Y.

S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip 9(9), 1236–1242 (2009).
[Crossref] [PubMed]

Lin, F.-Y.

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

Lin, S.-C. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Lin, Y.-J.

Lipson, M.

Liu, A. Q.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Liu, H. L.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Lu, C.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

Lu, Y.-W.

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

Luong, T.-D.

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Mao, X.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Mönch, W.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Müller, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Nguyen, N.-T.

C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[Crossref] [PubMed]

N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Petkovic-Duran, K.

Y. Zhu and K. Petkovic-Duran, “Capillary flow in microchannels,” Microfluid. Nanofluidics 8(2), 275–282 (2010).
[Crossref]

Psaltis, D.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ren, D.

Ren, H.

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Scherer, A.

Schmidt, B. S.

Schmidt, H.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

Seow, Y. C.

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab Chip 12(19), 3810–3815 (2012).
[Crossref] [PubMed]

Ser, W.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Shi, J.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Shi, Y.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Shi, Y. Z.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Skerlos, S. J.

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

Soh, Y. C.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Song, C.

Song, W.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

Stratton, Z. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Tam, H.-Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Tan, S.-H.

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Tsai, D. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

Tung, Y.

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Wang, G.

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Wang, G. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

Wang, K.

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Wang, N.

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Wang, Q.

Wang, X.

Wang, Y.

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Wu, J. H.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

Wu, M.

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

Wu, S. T.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Wu, S.-T.

Xianyu, H.

Xie, H.

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

Xiong, S.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

Xu, Q.

Xu, S.

Yang, A. H.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, Y.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Yang, Z. C.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

Yap, P. H.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Yeh, J. A.

Yin, L.

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

Yu, J. Q.

Yu, W.

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

Zappe, H.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Zhang, D.

Zhang, J. B.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, M.

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhang, X.

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref] [PubMed]

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, X. M.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

Zhang, Z.

Zhao, H. T.

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhu, W. M.

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu and K. Petkovic-Duran, “Capillary flow in microchannels,” Microfluid. Nanofluidics 8(2), 275–282 (2010).
[Crossref]

Zhuo, R.

Appl. Phys. Lett. (2)

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Biomicrofluidics (1)

N.-T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

Exp. Therm. Fluid Sci. (1)

L. Hu, M. Wu, W. Chen, H. Xie, and X. Fu, “Discontinuous pinning effect by a hole row to the gas-liquid interface in a parallel gap,” Exp. Therm. Fluid Sci. 87, 50–59 (2017).
[Crossref]

J. Electrost. (1)

T. B. Jones, “Liquid dielectrophoresis on the microscale,” J. Electrost. 51, 290–299 (2001).
[Crossref]

J. Microelectromech. Syst. (1)

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

J. Micromech. Microeng. (1)

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Lab Chip (16)

S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip 9(9), 1236–1242 (2009).
[Crossref] [PubMed]

S.-K. Fan, H.-P. Lee, C.-C. Chien, Y.-W. Lu, Y. Chiu, and F.-Y. Lin, “Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform,” Lab Chip 16(5), 847–854 (2016).
[Crossref] [PubMed]

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, and A. Q. Liu, “High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip,” Lab Chip 17(14), 2443–2450 (2017).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, and A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab Chip 16(9), 1617–1624 (2016).
[Crossref] [PubMed]

Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab Chip 16(1), 104–111 (2016).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

N. Wang, X. Zhang, Y. Wang, W. Yu, and H. L. W. Chan, “Microfluidic reactors for photocatalytic water purification,” Lab Chip 14(6), 1074–1082 (2014).
[Crossref] [PubMed]

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

H. L. Liu, Y. Shi, L. Liang, L. Li, S. S. Guo, L. Yin, and Y. Yang, “A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments,” Lab Chip 17(7), 1280–1286 (2017).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Y. C. Seow, S. P. Lim, and H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab Chip 12(19), 3810–3815 (2012).
[Crossref] [PubMed]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

Microfluid. Nanofluidics (2)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

Y. Zhu and K. Petkovic-Duran, “Capillary flow in microchannels,” Microfluid. Nanofluidics 8(2), 275–282 (2010).
[Crossref]

Nat. Commun. (1)

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat. Commun. 3(1), 651 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (8)

Opt. Lett. (2)

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Y. Tung, M. Zhang, C. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Actuators B Chem. 98(2), 356–367 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic design of the DEP lens. (a) 3D view, the DEP force drives the liquid-air interface from concave (dashed line: initial state) to convex. (b) Cross-sectional view of the lens, which has a top electrode (at the center of the channel) and a bottom electrode, the liquid layer is sandwiched by the two glasses bonded and spaced by two NOA 81 adhesive strips.
Fig. 2
Fig. 2 Measurement and calculation of the liquid-air interface. (a) Experimental measurements of the interface under 0 V (i.e. initial state), 100 V, 180 V and260 V, respectively. The red dashed lines represent the ideal spherical interface. The white dashed-dotted line in a4 is the real interfacial curve derived from the captured image. And a5 is the enlarged view of the contact line of a4. (b) Ray tracing calculation of the measured liquid-air interface in a4.
Fig. 3
Fig. 3 Experimentally observed focusing states at different applied voltages. (a) Initial state: the parallel probe beam becomes divergent after passing through the liquid-air interface. (b) Flat interface at 180 V: the probe beam keeps parallel in the liquid medium. (c) Focusing state: the probe beam is converged with the further increase of the voltage. (d) A minimum focal length of about 1 mm is achieved at 260 V.
Fig. 4
Fig. 4 The calculated (the curves) and the experimental (data points) focal lengths under different driving voltage. When the voltage is increased from 0 to 180 V, the focal length decreases from about −1 mm to infinite (top and right axes). While the voltage keeps increasing, the lens turns into a convex one and the focal length gradually decreases from infinite to about + 1 mm (the bottom and left axes). The insets show the observed liquid-air interfaces under 0 V, 60 V, 120 V, 220 V, 235 V and 250 V for easy visualization.
Fig. 5
Fig. 5 Comparison of the longitudinal spherical aberrations Δf/f of the experimental interface and the ideal spherical interface. The two insets show the ray tracing of the spherical (a) and the experimental interfaces (b), respectively. In the insets, the solid black line represents the spherical interface, and the black dashed line stands for the experimental interface.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F e = ε 0 ( ε L 1 )w 2d V 2
Δ Ρ 0 =2γκ=γ( 1 R 10 + 1 R 20 )
Δ Ρ 1 Δ Ρ 0 =γ( 1 R 11 + 1 R 20 )γ( 1 R 10 + 1 R 20 )=γ( 1 R 11 1 R 10 )
F=( Δ Ρ 1 Δ Ρ 0 ) w 0 d 0 = F e
f= nR n1

Metrics