Abstract

We report a gain-switched diode-seeded thulium doped fiber master oscillator power amplifier (MOPA) producing up to 295-kW picosecond pulses (35 ps) at a repetition rate of 1 MHz with a good beam quality (M2 ~1.3). A narrow-band, grating-based filter was incorporated within the amplifier chain to restrict the accumulation of nonlinear spectral broadening and counter-pumping of a short length of large-mode-area (LMA) fiber was used in the final stage amplifier to further reduce nonlinear effects. Finally, we generated watt-level >2.5-octave supercontinuum spanning from 750 nm to 5000 nm by using the MOPA output to pump an indium fluoride fiber.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

Jiang Liu, Qian Wang, and Pu Wang
Opt. Express 20(20) 22442-22447 (2012)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

Supercontinuum generation from ~1.9 to 4.5 μmin ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier

Ojas P. Kulkarni, Vinay V. Alexander, Malay Kumar, Michael J. Freeman, Mohammed N. Islam, Fred L. Terry, Jr., Manickam Neelakandan, and Allan Chan
J. Opt. Soc. Am. B 28(10) 2486-2498 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai, “Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device,” Appl. Opt. 49(10), 1809–1817 (2010).
    [Crossref] [PubMed]
  2. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  3. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
    [Crossref] [PubMed]
  4. L. Xu, Q. Fu, S. Liang, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “Thulium-fiber-laser-pumped, high-peak-power, picosecond, mid-infrared orientation-patterned GaAs optical parametric generator and amplifier,” Opt. Lett. 42(19), 4036–4039 (2017).
    [Crossref] [PubMed]
  5. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
    [Crossref] [PubMed]
  6. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  7. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  8. G. Stevens and A. Robertson, “Fibre laser component technology for 2-micron laser systems,” Proc. SPIE 9135, 91350N (2014).
    [Crossref]
  9. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2 μm with mJ-level pulse energy,” Appl. Opt. 55(8), 1941–1945 (2016).
    [Crossref] [PubMed]
  10. Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
    [Crossref]
  11. L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
    [Crossref] [PubMed]
  12. C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013).
    [Crossref] [PubMed]
  13. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
    [Crossref]
  14. P. Wang, L. Yang, and J. Liu, “156 micro-J ultrafast Thulium-doped fiber laser,” in SPIE Photonics West (2013), pp. 8601.
  15. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Tm-based fiber-laser system with more than 200 MW peak power,” Opt. Lett. 40(1), 9–12 (2015).
    [Crossref] [PubMed]
  16. A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 μm – From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
    [Crossref]
  17. J. Liu, C. Liu, H. Shi, and P. Wang, “High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier,” Opt. Express 24(13), 15005–15011 (2016).
    [Crossref] [PubMed]
  18. S. Guillemet, Y. Hernandez, D. Mortag, F. Haxsen, A. Wienke, D. Wandt, L. Leick, and W. Richter, “High energy sub-nanosecond thulium-doped all-fibre laser based on a rod-type photonic-crystal fibre amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh2A.27.
  19. G. P. Agrawal, “Modulation Instability in Erbium-Doped Fiber Amplifiers,” IEEE Photonics Technol. Lett. 4(6), 562–564 (1992).
    [Crossref]
  20. R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
    [Crossref]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).
  22. E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
    [Crossref]
  23. J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University, 2010).
  24. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref] [PubMed]
  25. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  26. J. C. Gauthier, V. Fortin, J. Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
    [Crossref] [PubMed]
  27. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
    [Crossref] [PubMed]

2017 (1)

2016 (4)

2015 (2)

2014 (4)

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 μm – From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

G. Stevens and A. Robertson, “Fibre laser component technology for 2-micron laser systems,” Proc. SPIE 9135, 91350N (2014).
[Crossref]

2013 (2)

2012 (3)

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2010 (2)

2009 (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

2005 (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

1992 (2)

E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

G. P. Agrawal, “Modulation Instability in Erbium-Doped Fiber Amplifiers,” IEEE Photonics Technol. Lett. 4(6), 562–564 (1992).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Modulation Instability in Erbium-Doped Fiber Amplifiers,” IEEE Photonics Technol. Lett. 4(6), 562–564 (1992).
[Crossref]

Alam, S. U.

Alam, S.-U.

Aoki, T.

Asai, K.

Baskiotis, C.

Bernier, M.

Broeng, J.

Byrne, D.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Carrée, J. Y.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Clarkson, W. A.

Desurvire, E.

E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

Feehan, J. S.

Fortin, V.

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Fu, Q.

Fukuoka, H.

Gaida, C.

Gauthier, J. C.

Gebhardt, M.

Heidt, A. M.

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 μm – From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

Herbert, C.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Hou, J.

Ishii, S.

Ishikawa, T.

Itabe, T.

Iwai, H.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jansen, F.

Jauregui, C.

Jin, X.

Kadwani, P.

C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013).
[Crossref] [PubMed]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Kelly, B.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Leick, L.

Li, L.

Li, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

Li, Z.

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 μm – From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

Liang, S.

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Limpert, J.

Liu, C.

Liu, J.

Liu, K.

Liu, Z.

Michalska, M.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Mizutani, K.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Nilsson, J.

O’Carroll, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Phelan, R.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Philippe, B.

Poulain, M.

Poulain, S.

Price, J. H. V.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Richardson, D. J.

Richardson, M.

C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013).
[Crossref] [PubMed]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Robertson, A.

G. Stevens and A. Robertson, “Fibre laser component technology for 2-micron laser systems,” Proc. SPIE 9135, 91350N (2014).
[Crossref]

Sato, A.

Shah, L.

C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 38(5), 691–693 (2013).
[Crossref] [PubMed]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Shepherd, D. P.

Shi, H.

Somers, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Stevens, G.

G. Stevens and A. Robertson, “Fibre laser component technology for 2-micron laser systems,” Proc. SPIE 9135, 91350N (2014).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Stutzki, F.

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Swiderski, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Tan, F.

Tang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

Tünnermann, A.

Vallée, R.

Wang, P.

Wang, Q.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

Wang, X.

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Xiao, H.

Xu, L.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Yan, Z.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

Yang, L.

Yin, K.

Yu, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

Zhang, B.

Zhang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

Zhou, P.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. Wang, “50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 20(5), 537–543 (2014).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 μm – From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. P. Agrawal, “Modulation Instability in Erbium-Doped Fiber Amplifiers,” IEEE Photonics Technol. Lett. 4(6), 562–564 (1992).
[Crossref]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 μm,” IEEE Photonics Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (1)

G. Stevens and A. Robertson, “Fibre laser component technology for 2-micron laser systems,” Proc. SPIE 9135, 91350N (2014).
[Crossref]

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref] [PubMed]

Other (4)

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University, 2010).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).

P. Wang, L. Yang, and J. Liu, “156 micro-J ultrafast Thulium-doped fiber laser,” in SPIE Photonics West (2013), pp. 8601.

S. Guillemet, Y. Hernandez, D. Mortag, F. Haxsen, A. Wienke, D. Wandt, L. Leick, and W. Richter, “High energy sub-nanosecond thulium-doped all-fibre laser based on a rod-type photonic-crystal fibre amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh2A.27.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the MOPA system. 1953 LD: laser diode at 1953nm; ISO: isolator; EYDFL: Erbium/Ytterbium co-doped fiber laser; PC: polarization controller; PM ISO: polarization maintaining isolator; DC: direct current; EOM: electro-optic modulator; FBG: fiber Bragg grating; 790 LD: Laser diode at 790nm; MA: mode adaptor; LMA-TDF: large-mode-area thulium doped fiber; DM: dichroic mirror.
Fig. 2
Fig. 2 (a) Spectra of the seed diode in CW and pulsed operation, as well as the outputs of the TDFA1 and EOM (0.05 nm resolution); (b) Spectra at the outputs of TDFA2, FBG1 and FBG2 (0.05 nm resolution).
Fig. 3
Fig. 3 (a) Temporal profile of the seed pulse measured by a fast photodetector; (b) Autocorrelation traces measured after the second and the third preamplifier.
Fig. 4
Fig. 4 (a) Power scaling of the final stage amplifier; (b) Autocorrelation trace measured at 4.5 W average output power and the corresponding Gaussian fit.
Fig. 5
Fig. 5 (a) Broadband (1.0 nm resolution) and (b) high resolution (0.05 nm resolution) spectra of the MOPA system at 1.024 W, 4.387 W and 10.34 W average output powers.
Fig. 6
Fig. 6 (a) Attenuation of fluoroindate fibers; (b) dispersion profile of fluoroindate fibers (data provided by Thorlabs).
Fig. 7
Fig. 7 Output supercontinuum spectra generated with different coupled pulse peak power.
Fig. 8
Fig. 8 Output power as a function of coupled pulse energy.

Metrics