Abstract

The optical characterization of a single metallic nanostructure has a strong interest in the scientific community owing to its localized surface plasmon resonances. For a single nano-object, the simplest and the accepted optical characterization technique is dark-field spectroscopy, even if there are many drawbacks and a certain complexity to operate it. We propose here using extinction spectroscopy of nanoparticles ensembles to characterize optically a single nanostructure. The scattering spectrum of a single gold nanocylinder and the extinction spectrum of a well-chosen array show similar results. We perform an experimental and numerical comparative study to draw parallels between both techniques.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging

Camille G. Artur, Tasha Womack, Fusheng Zhao, Jason L. Eriksen, David Mayerich, and Wei-Chuan Shih
Biomed. Opt. Express 9(2) 603-615 (2018)

A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures

W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao
Opt. Express 18(2) 843-853 (2010)

Optimized plasmonic nanostructures for improved sensing activities

Hong Shen, Nicolas Guillot, Jérémy Rouxel, Marc Lamy de la Chapelle, and Timothée Toury
Opt. Express 20(19) 21278-21290 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2013).
  3. E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
    [Crossref] [PubMed]
  4. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
    [Crossref]
  5. P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
    [Crossref]
  6. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
    [Crossref]
  7. J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
    [Crossref]
  8. J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
    [Crossref]
  9. J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).
  10. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
    [Crossref] [PubMed]
  11. J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
    [Crossref] [PubMed]
  12. M. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18(3), 2579–2587 (2010).
    [Crossref] [PubMed]
  13. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
    [Crossref]
  14. L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
    [Crossref]
  15. O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
    [Crossref]
  16. P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
    [Crossref]
  17. M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
    [Crossref] [PubMed]
  18. J-P. Bérenger, “Perfectly matched layer (PML) for computational electromagnetics,” Synthesis Lectures on Computational Electromagnetics 2(1), 1–117 (2007).
    [Crossref]
  19. Lumerical Solutions, “Sources - TFSF,” https://kb.lumerical.com/en/ref_sim_obj_sources_tfsf.html
  20. V. R. Weidner and J. J. Hsia., “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71(7), 856–861 (1981).
    [Crossref]
  21. N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
    [Crossref]
  22. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691–700 (2017).
    [Crossref]

2017 (3)

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691–700 (2017).
[Crossref]

2013 (1)

M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
[Crossref] [PubMed]

2012 (1)

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

2011 (1)

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

2010 (2)

M. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18(3), 2579–2587 (2010).
[Crossref] [PubMed]

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

2009 (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
[Crossref]

2008 (3)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

2007 (2)

J-P. Bérenger, “Perfectly matched layer (PML) for computational electromagnetics,” Synthesis Lectures on Computational Electromagnetics 2(1), 1–117 (2007).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

2006 (1)

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

2005 (1)

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

2000 (1)

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

1981 (1)

Adam, P.-M.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Akjouj, A.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Aleksiuk, D.

M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
[Crossref] [PubMed]

Angelomé, P. C.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
[Crossref]

Aussenegg, F. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Bao, J.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Bérenger, J-P.

J-P. Bérenger, “Perfectly matched layer (PML) for computational electromagnetics,” Synthesis Lectures on Computational Electromagnetics 2(1), 1–117 (2007).
[Crossref]

Bijeon, J.-L.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Billaud, P.

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Bonnet, C.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Bonod, N.

Bouhafs, B.

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Broyer, M.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

Capasso, F.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

M. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18(3), 2579–2587 (2010).
[Crossref] [PubMed]

Caputo, R.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Chan, V. Z.-H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Chang, W. S.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Coronado, E. A.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Cottancin, E.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Del Fatti, N.

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

Dickson, W.

Ditlbacher, H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

El-Sayed, M.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Encina, E. R.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Fan, J.

Fan, J. A.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

Feldmann, J.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Funston, A.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Geier, S.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Gérard, D.

Gontier, A.

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Grand, J.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Grillet, N.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Grimault, A.-S.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

Halas, N. J.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

M. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 18(3), 2579–2587 (2010).
[Crossref] [PubMed]

Hartlandd, G. V.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Hecker, N. E.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Hsia., J. J.

Hu, M.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Khanal, B. P.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Khlopin, D.

Knight, M.

Kostcheev, S.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2013).

Krenn, J. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Kuno, M.

M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
[Crossref] [PubMed]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Lamy de la Chapelle, M.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Lassiter, J. B.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

Laux, F.

Lechuga, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
[Crossref]

Lermé, J.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Lévèque, G.

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Lévêque, G.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

Link, S.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Liz-Marzán, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
[Crossref]

Mahi, N.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Marae-Djouda, J.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Marhaba, S.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Martin, J.

Maurer, T.

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

McDonald, M. P.

M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
[Crossref] [PubMed]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Möller, M.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Mulvaney, P.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Muskens, O. L.

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

Nordlander, P.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

Novo, C.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Pellarin, Michel

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Plain, J.

Royer, P.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Saison, O.

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
[Crossref]

Slaughter, L. S.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Spatz, J. P.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Staleva, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Stefani, F. D.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Swanglap, P.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Tcherniak, A.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Vallée, F.

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

Vial, A.

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Vialle, J-L.

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

Vietmeyer, F.

M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
[Crossref] [PubMed]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2013).

von Plessen, G.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

Wang, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Wardley, W. P.

Weidner, V. R.

Wurtz, G. A.

Xia, Y.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Zayats, A. V.

Zou, S.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Zubarev, E. R.

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

Appl. Phys. Lett. (1)

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77(19), 2949–2951 (2000).
[Crossref]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

J. Chem. Phys. C (2)

L. S. Slaughter, W. S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: varying the width at constant aspect ratio,” J. Chem. Phys. C 114(11), 4934–4938 (2010).
[Crossref]

N. Mahi, G. Lévèque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers,” J. Chem. Phys. C 121(4), 2388–2401 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Journal of Materials Chemistry (1)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartlandd, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” Journal of Materials Chemistry 18(17), 1949–1960 (2008).
[Crossref] [PubMed]

Nano Letters (1)

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Letters 12(6), 2817–2821 (2012).
[Crossref] [PubMed]

Nano Today (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3) 244–251 (2009).
[Crossref]

Nanophotonics (1)

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6(1), 279–288 (2017).

Nanoscale (1)

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

O. L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, and F. Vallée, “Optical extinction spectrum of a single metal nanoparticle: Quantitative characterization of a particle and of its local environment,” Phys. Rev. B 78(20), 205410 (2008).
[Crossref]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005).
[Crossref]

Plasmonics (2)

J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. Lamy de la Chapelle, J.-L. Bijeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics 1(2–4), 135–140 (2006).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Review of Scientific Instruments (2)

P. Billaud, S. Marhaba, N. Grillet, E. Cottancin, C. Bonnet, J. Lermé, J-L. Vialle, M. Broyer, and Michel Pellarin, “Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp,” Review of Scientific Instruments 81(4), 043101 (2008).
[Crossref]

M. P. McDonald, F. Vietmeyer, D. Aleksiuk, and M. Kuno, “Supercontinuum spatial modulation spectroscopy: detection and noise limitations,” Review of Scientific Instruments 84(11), 113104 (2013).
[Crossref] [PubMed]

Synthesis Lectures on Computational Electromagnetics (1)

J-P. Bérenger, “Perfectly matched layer (PML) for computational electromagnetics,” Synthesis Lectures on Computational Electromagnetics 2(1), 1–117 (2007).
[Crossref]

Other (3)

Lumerical Solutions, “Sources - TFSF,” https://kb.lumerical.com/en/ref_sim_obj_sources_tfsf.html

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Dark field reflection scattering setup schematic: a centrally blocked and linearly polarized beam is focused through the 50X dark field objective. The collected light is filtered confocally using an optical fiber coupled to a lens. The fiber has a 50 μm core size and the collection zone corresponds to 3 μm on the substrate. It is connected to the spectrometer Ocean Optics QE65000. (b) Scheme of the dark-field illumination beam profile: yellow-impinging light, black-collection, k - wave vector, E - electric field, Ex and Ez-components of electric field, P - Polarization. (c) Extinction setup schematic: a broadband light source illuminates the sample from bottom. The collected light from glass side by 20X (NA=0.4) objective is coupled to a 50 μm core size fiber. The collection zone corresponds to 8 μm on a substrate. (d) Halogen lamp spectra: black curve - bright field illumination, red curve - DF illumination.
Fig. 2
Fig. 2 (a) DF reflection scattering spectrum of single 170nm diameter and 50 height GNC. Illumination NA=0.8–0.95, collection NA= 0.8 in air, (b) corresponding numerical simulation. (c) Extinction spectrum of 170nm diameter and 50nm height GNC array. The interparticle distance is 1μm. (d) Extinction spectrum of single 170nm diameter and 50nm height GNC
Fig. 3
Fig. 3 (a) Supported propagating orders in the glass for infinite periodic 170nm GNC array with 1μm pitch. (b) Far-field distribution of diffracted orders in the glass at wavelength of 502nm and (c) 850nm. Scale is logarithmic.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x ( m ) = k x , inc m K x , k y ( n ) = k y , inc n K y ,

Metrics