Abstract

Theoretical and experimental evaluation of the photodarkening effect as a heat source in ytterbium doped fibers is presented. An additional non-radiative decay channel that opens after photodarkening the fiber is identified via fluorescence lifetime reduction and as an additional heat source proportional to inversion. It is included in the heat source model which was tested on a core-pumped fiber amplifiers. High temperature elevation at low pump powers shows potential heat-related problems in high inversion systems that are more susceptible to photodarkening.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Advanced attenuation and fluorescence measurement methods in the investigation of photodarkening and related properties of ytterbium-doped fibers

Anka Schwuchow, Sonja Unger, Sylvia Jetschke, and Johannes Kirchhof
Appl. Opt. 53(7) 1466-1473 (2014)

Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening

Cesar Jauregui, Hans-Jürgen Otto, F. Stutzki, J. Limpert, and A. Tünnermann
Opt. Express 23(16) 20203-20218 (2015)

Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling

Mikko J. Söderlund, Joan J. Montiel i Ponsoda, Jeffrey P. Koplow, and Seppo Honkanen
Opt. Express 17(12) 9940-9946 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  3. C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
    [Crossref] [PubMed]
  4. R. Peretti, C. Gonnet, and A.-M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys. 112(9), 093511 (2012).
    [Crossref]
  5. J. J. Montiel i Ponsoda, M. J. Söderlund, J. P. Koplow, J. J. Koponen, and S. Honkanen, “Photodarkening-induced increase of fiber temperature,” Appl. Opt. 49(22), 4139–4143 (2010).
    [Crossref] [PubMed]
  6. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
    [Crossref] [PubMed]
  7. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref] [PubMed]
  8. C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
    [Crossref] [PubMed]
  9. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [Crossref] [PubMed]
  10. R. Piccoli, D. Mechin, T. Robin, and S. Taccheo, “Lifetime reduction due to photodarkening phenomenon in ytterbium-doped fibers and rate equation term,” Opt. Lett. 38(21), 4370–4373 (2013).
    [Crossref] [PubMed]
  11. S. Jetschke, A. Schwuchow, S. Unger, M. Leich, M. Jäger, and J. Kirchhof, “Deactivation of Yb3+ ions due to photodarkening,” Opt. Mater. Express 3(4), 452–458 (2013).
    [Crossref]
  12. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [Crossref] [PubMed]
  13. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  14. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

2013 (2)

2012 (2)

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys. 112(9), 093511 (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

2010 (1)

2008 (2)

2007 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Barty, C. P.

Beach, R. J.

Breitkopf, S.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Dawson, J. W.

Engholm, M.

Gonnet, C.

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys. 112(9), 093511 (2012).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Heebner, J. E.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Honkanen, S.

Jäger, M.

Jauregui, C.

Jetschke, S.

Jurdyc, A.-M.

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys. 112(9), 093511 (2012).
[Crossref]

Kirchhof, J.

Koplow, J. P.

Koponen, J. J.

Leich, M.

Limpert, J.

Mechin, D.

Messerly, M. J.

Modsching, N.

Montiel i Ponsoda, J. J.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Norin, L.

Otto, H.-J.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Pax, P. H.

Peretti, R.

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys. 112(9), 093511 (2012).
[Crossref]

Piccoli, R.

Robin, T.

Röpke, U.

Schwuchow, A.

Shverdin, M. Y.

Siders, C. W.

Söderlund, M. J.

Sridharan, A. K.

Stappaerts, E. A.

Stutzki, F.

Taccheo, S.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Tünnermann, A.

Unger, S.

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

J. Appl. Phys. (1)

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+ doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys. 112(9), 093511 (2012).
[Crossref]

Opt. Express (7)

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jäger, “Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects,” Opt. Express 24(12), 13009–13022 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Dependence of inversion on pump light (976 nm) in a pristine fiber for different amount of signal light – 0 mW (red), 100 mW (blue) and 200 mW (green). (b) Temperature increase vs pump power in a pristine (full curve) and photodarkened (dashed). Same color scheme applies.
Fig. 2
Fig. 2 (a,b) Fit results of model (6) for pristine (red) and photodarkened (blue) fiber and mean values (dashed curves). In (a) absorption coefficients (sum of intrinsic and PD induced loss) at pump wavelength is shown and in (b) non-radiative decay rates (set to 0 for pristine fiber). The black dashed horizontal line is non-radiative decay rate as extracted directly from fluorescensce lifetime measurement shown in (c) assuming a single-exponential decay. ISE is a power of detected spontaneously emitted light emitted after the end an excitation pulse and ISE,0 = ISE (t = 0).
Fig. 3
Fig. 3 Inversion (up) and temperature rise (below) along fiber preamplifier.
Fig. 4
Fig. 4 Ratio of PD and QD heat source at different signal and pump powers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔT= T surf T = Q a 2 2bh
Q ABS,0 = α 0,s Γ s P s /A+ α 0,p Γ p P p /A .
Q QD =( W 21 Δ E s + A 21 Δ E SE ) n 2 N tot .
  Q PD = Q LA + Q NR = α PD,s Γ s P s /A+ α PD,p Γ p P p /A+ A NR n 2 ( P p , P s ) N tot Δ E 0 .
ΔT= a 2 2bh [ Γ A ( α p P p + α s P s )+ W 21 Δ E s n 2 N tot +( A 21 Δ E SE + A NR Δ E 0 ) n 2 N tot ].

Metrics