Abstract

Compact microendoscopes use multicore optical fibers (MOFs) to visualize hard-to-reach regions of the body. These devices typically have a large numerical aperture (NA) and are fixed-focus, leading to blurry images from a shallow depth of field with little focus control. In this work, we demonstrate a method to digitally adjust the collection aperture and therefore extend the depth of field of lensless MOF imaging probes. We show that the depth of field can be more than doubled for certain spatial frequencies, and observe a resolution enhancement of up to 78% at a distance of 50μm from the MOF facet. Our technique enables imaging of complex 3D objects at a comparable working distance to lensed MOFs, but without the requirement of lenses, scan units or transmission matrix calibration. Our approach is implemented in post processing and may be used to improve contrast in any microendoscopic probe utilizing a MOF and incoherent light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging properties of extended depth of field microscopy through single-shot focus scanning

Sheng-Huei Lu and Hong Hua
Opt. Express 23(8) 10714-10731 (2015)

Widefield lensless imaging through a fiber bundle via speckle correlations

Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan, and Ori Katz
Opt. Express 24(15) 16835-16855 (2016)

Extended depth of field using a liquid crystal annular spatial light modulator

Iftach Klapp, Asi Solodar, and Ibrahim Abdulhalim
Appl. Opt. 53(19) 4301-4312 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Hughes, T. P. Chang, and G.-Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
    [Crossref] [PubMed]
  2. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  3. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
    [Crossref] [PubMed]
  4. X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
    [Crossref] [PubMed]
  5. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
    [Crossref] [PubMed]
  6. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  7. Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
    [Crossref]
  8. M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Exp. 47, 2306 (2011).
    [PubMed]
  9. N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
    [Crossref] [PubMed]
  10. J. S. Lee, G. S. Jung, and Y. H. Won, “Light field 3D endoscope based on electro-wetting lens array,” in Proc. SPIE 10061, 100610J (2017).
    [Crossref]
  11. Y.-J. Wang, X. Shen, Y.-H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40(15), 3564–3567 (2015).
    [Crossref] [PubMed]
  12. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  13. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013).
    [Crossref] [PubMed]
  14. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  15. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  16. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  17. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  18. M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
    [Crossref] [PubMed]
  19. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]
  20. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer Science & Business Media, 2012).
  21. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” in ACM Transactions on Graphics (TOG) (ACM, 2006), Vol. 25, pp. 924–934.
  22. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. TOG 32, 46 (2013).
  23. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
    [Crossref] [PubMed]
  24. E. Sánchez-Ortiga, C. J. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
    [Crossref] [PubMed]
  25. A. Perperidis, H. E. Parker, A. Karam-Eldaly, Y. Altmann, K. Dhaliwal, R. R. Thomson, M. G. Tanner, and S. McLaughlin, “Characterization and modelling of inter-core coupling in coherent fiber bundles,” Opt. Express 25(10), 11932–11953 (2017).
    [Crossref] [PubMed]
  26. E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  27. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–8.
  28. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  29. A. Orth and K. B. Crozier, “Light field moment imaging,” Opt. Lett. 38(15), 2666–2668 (2013).
    [Crossref] [PubMed]
  30. A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
    [Crossref] [PubMed]
  31. N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.
  32. S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
    [Crossref] [PubMed]
  33. G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
    [Crossref] [PubMed]
  34. D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref] [PubMed]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (6)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

E. Sánchez-Ortiga, C. J. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37(7), 1280–1282 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
[Crossref] [PubMed]

2011 (3)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Exp. 47, 2306 (2011).
[PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

2009 (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (2)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
[Crossref] [PubMed]

2003 (1)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

2002 (1)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

1992 (1)

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Abaie, B.

G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
[Crossref] [PubMed]

Adelson, E. H.

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Akram, A. R.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Altmann, Y.

Antipa, N.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Ballato, J.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

Bando, Y.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. TOG 32, 46 (2013).

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Bradley, M.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Brenner, M.

Calatayud, A.

Chang, T. P.

Chen, X.

Chen, Z.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choudhary, T. R.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Chu, K. K.

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Collier, T.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Crozier, K.

Crozier, K. B.

Dalgarno, P. A.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Descour, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Dhaliwal, K.

A. Perperidis, H. E. Parker, A. Karam-Eldaly, Y. Altmann, K. Dhaliwal, R. R. Thomson, M. G. Tanner, and S. McLaughlin, “Characterization and modelling of inter-core coupling in coherent fiber bundles,” Opt. Express 25(10), 11932–11953 (2017).
[Crossref] [PubMed]

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Dholakia, K.

Doblas, A.

Dunsby, C. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Follen, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Ford, T. N.

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

Frazier, R. J.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

French, P. M.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Georgiev, T.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–8.

Girkin, J. M.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Guo, S.

Hanley, Q. S.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Hawkins, T.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

Heintzmann, R.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Huang, Y.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

Hughes, M.

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Javidi, B.

Jovin, T. M.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Jung, G. S.

J. S. Lee, G. S. Jung, and Y. H. Won, “Light field 3D endoscope based on electro-wetting lens array,” in Proc. SPIE 10061, 100610J (2017).
[Crossref]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Kang, J. U.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

Karam-Eldaly, A.

Karbasi, S.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Knight, J. C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Koch, K. W.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

Krstajic, N.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Lee, J. S.

J. S. Lee, G. S. Jung, and Y. H. Won, “Light field 3D endoscope based on electro-wetting lens array,” in Proc. SPIE 10061, 100610J (2017).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Leonetti, M.

G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
[Crossref] [PubMed]

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Liang, C.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Lim, D.

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

Lin, Y.-H.

Liu, X.

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

Lumsdaine, A.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–8.

Mafi, A.

G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
[Crossref] [PubMed]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Martínez-Corral, M.

Marwah, K.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. TOG 32, 46 (2013).

McDonald, N.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

McLaughlin, S.

Mertz, J.

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

Moore, A.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Moser, C.

Mukai, D.

Munroe, P.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nailon, J.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Necula, S.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Neil, M. A.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Ng, R.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Orth, A.

Papadopoulos, I. N.

Parker, H. E.

Paterson, C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Pedretti, E.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Perperidis, A.

Pierce, M.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Exp. 47, 2306 (2011).
[PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Plöschner, M.

Psaltis, D.

Raskar, R.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. TOG 32, 46 (2013).

Reichenbach, K. L.

Richards-Kortum, R.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Exp. 47, 2306 (2011).
[PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Ruocco, G.

G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
[Crossref] [PubMed]

Saavedra, G.

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

Sarafis, V.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Schirmacher, W.

G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
[Crossref] [PubMed]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Scholefield, E.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Shen, X.

Sheppard, C. J.

Stone, J. M.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Straka, B.

Sung, K.-B.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Tanner, M. G.

A. Perperidis, H. E. Parker, A. Karam-Eldaly, Y. Altmann, K. Dhaliwal, R. R. Thomson, M. G. Tanner, and S. McLaughlin, “Characterization and modelling of inter-core coupling in coherent fiber bundles,” Opt. Express 25(10), 11932–11953 (2017).
[Crossref] [PubMed]

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

Thomson, R. R.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Waller, L.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Wang, J. Y.

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wang, Y.-J.

Warren, S. C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

Wetzstein, G.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. TOG 32, 46 (2013).

Won, Y. H.

J. S. Lee, G. S. Jung, and Y. H. Won, “Light field 3D endoscope based on electro-wetting lens array,” in Proc. SPIE 10061, 100610J (2017).
[Crossref]

Xie, T.

Xu, C.

Yang, G.-Z.

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yu, D.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Exp. 47, 2306 (2011).
[PubMed]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Ziegler, D.

ACM Trans. Graph. TOG (1)

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph. TOG 32, 46 (2013).

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal Endomicroscopy: Instrumentation and Medical Applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. Neil, C. Paterson, C. W. Dunsby, and P. M. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

J. Biomed. Opt. (3)

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 046009 (2016).
[Crossref] [PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Dark-field illuminated reflectance fiber bundle endoscopic microscope,” J. Biomed. Opt. 16(4), 046003 (2011).
[Crossref] [PubMed]

D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination HiLo microscopy,” J. Biomed. Opt. 16(1), 016014 (2011).
[Crossref] [PubMed]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Vis. Exp. (1)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Exp. 47, 2306 (2011).
[PubMed]

Micron (1)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron 34(6-7), 293–300 (2003).
[Crossref] [PubMed]

Nat. Commun. (3)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5, 3362 (2014).
[Crossref] [PubMed]

G. Ruocco, B. Abaie, W. Schirmacher, A. Mafi, and M. Leonetti, “Disorder-induced single-mode transmission,” Nat. Commun. 8, 14571 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Other (5)

J. S. Lee, G. S. Jung, and Y. H. Won, “Light field 3D endoscope based on electro-wetting lens array,” in Proc. SPIE 10061, 100610J (2017).
[Crossref]

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer Science & Business Media, 2012).

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” in ACM Transactions on Graphics (TOG) (ACM, 2006), Vol. 25, pp. 924–934.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–8.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Supplementary Material (1)

NameDescription
» Visualization 1       Full aperture vs. extended depth of field imaging of cloth fibers near a multicore optical fiber facet

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) A ray (red) impinges on a fiber core (gray) at the input facet at an orientation described by the angle of incidence θ and the azimuthal angle φ. These angles relate to the orientation of a light ray and not to the core geometry. The MOF is composed of thousands of such cores, as shown in the inset. Inset: Microscope image of a MOF facet in reflection. Individual fiber cores are visible as bright, roughly circular shapes on a darker background (cladding). Scale bar: 10μm. b) Simulated input core intensity distributions arising from plane waves oriented at angles (θ, φ). The central image is the intensity pattern at the input, resulting from a normally incident plane wave; corner images are the intensity patterns near θc = sin−1(NAc). Scalebar: 5μm. Fiber core input circled in blue corresponds to the pattern shown in (c) inset. c) Simulated normalized intensity within digital apertures of radii R = 7px, 3px and 1px are shown in blue, orange and purple, respectively. The green curve labeled “eDOF” is the difference between aperture area-normalized R = 1px and R = 3px curves (See Appendix 1). All curves are normalized to have a maximum value of 1. The grey background indicates the range of acceptance angles within the NA of the MOF. Inset indicates each aperture size (purple, orange and blue circles), relative to the full core size (blue outline), superimposed over the intensity pattern circled in blue in (b). 1px = 238.5nm to match the experiments in Fig. 3. d) Experimentally recorded output intensity from a single core at the output facet for varying plane wave input angles (θ, φ). Scalebar: 5μm. See Fig. 2(a) for imaging geometry.
Fig. 2
Fig. 2 a) Schematic of the optical setup for eDOF imaging through a MOF. The proximal facet of the MOF is illuminated with an LED (collimated with a collimating lens CL) via a mirror (M), a 200mm lens (L), a polarizer (P1), a beam splitter (BS) and a 20x objective lens (OBJ). Both ends of the MOF and the sample (S) are affixed to independent 3-axis translation stages (xyz). The camera (CAM) images light reflected from the sample back through the fiber, via the beam splitter, a tube lens (TL) and a second polarizer (P2). The polarization axes of P1 and P2 are orthogonal to filter out reflected light at the proximal facet. b) Raw camera image of reflected light through the MOF from group 5 of the USAF target sample, placed 20μm from the distal facet of the fiber. Scalebar: 50μm. c) Close up image of the red-boxed region in (b), containing a portion of the group 5 element 6 grating. The intensity distribution within each core is visible. Scalebar: 10μm. d) Magnified images of two circled cores from (c), along with their respective intensity profiles along a horizontal line through the center of each core.
Fig. 3
Fig. 3 a) Images of a portion of group 5 of a USAF 1951 target. Each column displays the image acquired when the target at depths 10-100μm. Top row: original image series, constructed by integrating all of the signal within each core (R = 7 pixels) and resampling onto a grid. Second and third rows: the same as the top row, but integrating only over a radius of R = 1, and 3 pixels, respectively, centered at each core. Bottom row: eDOF image obtained by subtracting the R = 3 pixel radius image series from the R = 1 pixel radius image series. Scalebar: 100μm. b) SNR as a function of grating spatial frequency at depths 10, 50 and 100μm. The SNR = modulation depth of the grating with a given spatial frequency, normalized by the noise in the image. Dotted and dashed curves denote the original full aperture images and the eDOF images, respectively. The SNR of the eDOF image exceeds that of the original image for larger spatial frequencies and at larger depths. c) SNR as a function of depth for spatial frequencies of 40, 57 and 81 lp/mm. SNR curves for eDOF images are flatter over a wider range of depths than for the original image, indicating resistance to defocus. d) Resolution limit of the full aperture and eDOF images as a function of depth. The blue dot-dashed line indicating the radius of geometric optics blur circle Rblur = depth × tanθNA (NA = 0.40) for the full aperture of the MOF is given for reference. The best-fit line to the eDOF resolution curve, with a slope corresponding to an NA of 0.15, is shown as the dot-dashed green line. The resolution is defined as the pitch of the smallest resolvable grating at a given depth. The eDOF image has a superior resolution at all measured depths. None of the gratings imaged can be resolved in a full aperture image beyond a depth of 60μm.
Fig. 4
Fig. 4 a) Full aperture and eDOF images of cloth fibers as seen through a MOF. The top row shows images acquired using a 10x objective to image the proximal facet of the fiber onto the camera. Scalebar: 200μm. The bottom two rows show still frames from Visualization 1, acquired using a 20x objective. Scalebar: 100μm. The peach-colored dashed and solid lines denote the position of the intensity profiles shown in (b). The blue dots indicate the position of three cloth fibers along the line profile. b) Intensity profile along the lines shown in the middle row of (a). The solid curve is the intensity profile in the eDOF image and the dotted curve is the intensity profile in the full aperture image. Blue dots indicate the position of three cloth fibers that are unresolvable in the full aperture image.
Fig. 5
Fig. 5 Simulated angular PSFs, normalized to aperture area (compare to Fig. 1(c)). Here, the total intensity within each subregion of the core is divided by the core area (πR2). The small aperture angular PSF (R = 1px) has the largest magnitude because the mean pixel value is greatest for this subregion. In contrast, the large aperture angular PSF (R = 7px) has the lowest mean value as it contains many dim pixels that lower the mean value. The eDOF curve is the calculated as Ismall – Imedium directly using the curves in this plot.
Fig. 6
Fig. 6 Modified optical setup for measuring MOF core output [Fig. 1(d)] as a function of input ray orientation. A DMD is introduced on the proximal side, and transmitted light is measured with a microscope objective (OBJ), tube lens (TL), polarizer (P2) and camera (CAM, Thorlabs DCC3240M) on the distal side.
Fig. 7
Fig. 7 a) Images of a portion of groups 6 and 7 of a USAF 1951 target. Each column displays the image acquired when the target is placed at a depth of 10-100μm. The top row shows the original image series, constructed by integrating all of the signal within each core (R = 7 pixels) and resampling onto a grid. The 2nd and 3rd rows are the same as the top row, but integrating only over a radius of R = 1, and 3 pixels, respectively, centered at each core. The bottom row is the eDOF image, obtained by subtracting the R = 3 pixel radius image series from the R = 1 pixel radius image series. These images are used in addition to the images in Fig. 3(a) of the main text to create the SNR and resolution curves in Figs. 3b,c,d. Scalebar: 100μm.
Fig. 8
Fig. 8 Top row: Full aperture images of the group 6 of the USAF target. Middle row: Sharpened full aperture images using unsharp masking. Though contrast is improved, even this aggressive unsharp masking is unable to uncover resolution elements that are already unresolvable in the original full aperture images in (a). Unsharp masking was achieved using the MATLAB imsharpen function with a radius of 2 and amount of 1.5. Bottom row: eDOF-processed image as per Fig. 3. Scalebar: 100μm.

Metrics