Abstract

We report an 8 × 8 silicon photonic integrated Arrayed Waveguide Grating Router (AWGR) targeted for WDM routing applications in O-band. The AWGR was designed for cyclic-frequency operation with a channel spacing of 10 nm. The fabricated AWGR exhibits a compact footprint of 700 × 270 μm2. Static device characterization revealed 3.545 dB maximum channel loss non-uniformity with 2.5 dB best-case channel insertion losses and 11 dB channel crosstalk, in good agreement with the simulated results. Successful data routing operation is demonstrated with 25 Gb/s signals for all 8 × 8 AWGR port combinations with a maximum power penalty of 2.45 dB.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology

Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(8) 9395-9403 (2014)

Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings

Nazirul A. Idris, Katsumi Yoshizawa, Yasunori Tomomatsu, Makoto Sudo, Tadashi Hajikano, Ryogo Kubo, Georgios Zervas, and Hiroyuki Tsuda
Opt. Express 24(1) 672-686 (2016)

Four-port mode-selective silicon optical router for on-chip optical interconnect

Hao Jia, Ting Zhou, Xin Fu, Jianfeng Ding, Lei Zhang, and Lin Yang
Opt. Express 26(8) 9740-9748 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
    [Crossref]
  2. S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
    [Crossref]
  3. Á. Rosa, A. Gutiérrez, A. Brimont, A. Griol, and P. Sanchis, “High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes,” Opt. Express 24(1), 191–198 (2016).
    [Crossref] [PubMed]
  4. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
    [Crossref] [PubMed]
  5. H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proceedings 18th High Performance Interconnects Conference, 113–116 (2010).
    [Crossref]
  6. X. Leijtens, M. J. B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (2006).
  7. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” in Proceedings of the IEEE, (IEEE, 2009), pp. 1166–1185.
    [Crossref]
  8. A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic WDM Switching for Scalable Data Center and HPC Interconnect Networks”, in Proceedings of OECC (2016), pp. 1–3.
  9. R. Proietti, Z. Cao, Y. Li, and S. J. B. Yoo, “Scalable and distributed optical interconnect architecture based on AWGR for HPC and data centers,” in Proceedings Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2014), paper Th2A.59.
    [Crossref]
  10. R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, Y. Yin, and S. J. B. Yoo, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21(26), 32655–32667 (2013).
    [Crossref] [PubMed]
  11. P. Grani, R. Proietti, S. Cheung, and S. J. B. Yoo, “‘Flat-Topology High-Throughput Compute Node With AWGR-Based Optical-Interconnects,” J. Lightwave Technol. 34(12), 2959–2968 (2016).
    [Crossref]
  12. G. T. Kanellos and N. Pleros, “WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS,” Proc. SPIE 10109, 101090D (2017).
  13. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
    [Crossref] [PubMed]
  14. N. A. Idris and H. Tsuda, “6.4-THz-spacing, 10-channel cyclic arrayed waveguide grating for T- and O-band coarse WDM,” IEICE Electron. Express 13(7), 1–7 (2010).
  15. M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photonics Technol. Lett. 4(11), 1250–1253 (1992).
    [Crossref]
  16. S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakana, M. Ono, H. Sato, N. Kiel, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8x8 AWG Wavelength Router using Ultra Low Loss Polymer Optical Waveguide Material (CYTOPTM),” in Proceedings Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2008), pp. 1–3.
  17. D. Seyringer, “Arrayed Waveguide Gratings,” in SPIE Spotlight Publications, (SPIE, 2016).
  18. P. Dumon, W. Bogaerts, D. Van Thourhout, G. Mortier, and R. Baets, “A Nanophotonic 4x4 Wavelength Router in Silicon-on-Insulator,” in Proceedings Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OThO5.
  19. Y. Chen, J. Zou, T. Lang, and J. He, “SOI-based Arrayed Waveguide Grating Router with grating couplers fabricated in a single shallow etching step,” in Proceedings Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2015), paper ASu2A.22.
    [Crossref]
  20. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.
  21. S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,’,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
    [Crossref]
  22. G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
    [Crossref]
  23. G. Song, J. Zou, and J. He, “Ultra-compact silicon-arrayed waveguide grating routers for optical interconnect systems,” Chin. Opt. Lett. 15(3), 030603 (2017).
    [Crossref]
  24. 100G–CLR4 Alliance, “Specification for 100 Gb/s Coarse Wavelength Division Multiplex Optical Data Transmission”, https://www.clr4-alliance.org/media/doc/100G-CLR4-Specification_v1p52_FINAL
  25. Bright Photonics B. V., http://brightphotonics.eu/
  26. E. J. Stanton, N. Volet, and J. E. Bowers, “Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared,” Opt. Express 25(24), 30651–30663 (2017).
    [Crossref] [PubMed]
  27. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [Crossref]

2017 (3)

2016 (2)

2015 (3)

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
[Crossref]

2014 (2)

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,’,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

2013 (1)

2010 (1)

N. A. Idris and H. Tsuda, “6.4-THz-spacing, 10-channel cyclic arrayed waveguide grating for T- and O-band coarse WDM,” IEICE Electron. Express 13(7), 1–7 (2010).

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

1992 (1)

M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photonics Technol. Lett. 4(11), 1250–1253 (1992).
[Crossref]

Ahn, J. H.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Alferness, R. C.

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic WDM Switching for Scalable Data Center and HPC Interconnect Networks”, in Proceedings of OECC (2016), pp. 1–3.

Apostolopoulos, D.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Avramopoulos, H.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Bergman, K.

Binkert, N.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.

Bolzhevolnyi, S. I.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Bowers, J. E.

E. J. Stanton, N. Volet, and J. E. Bowers, “Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared,” Opt. Express 25(24), 30651–30663 (2017).
[Crossref] [PubMed]

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic WDM Switching for Scalable Data Center and HPC Interconnect Networks”, in Proceedings of OECC (2016), pp. 1–3.

Brimont, A.

Calhoun, D.

Chen, G.

G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
[Crossref]

Cheung, S.

Davis, A.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Dereux, A.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Dragone, C.

M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photonics Technol. Lett. 4(11), 1250–1253 (1992).
[Crossref]

Dumon, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.

Gan, F.

Giannoulis, G.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Grani, P.

Griol, A.

Gutiérrez, A.

He, J.

G. Song, J. Zou, and J. He, “Ultra-compact silicon-arrayed waveguide grating routers for optical interconnect systems,” Chin. Opt. Lett. 15(3), 030603 (2017).
[Crossref]

G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
[Crossref]

Hendry, R.

Idris, N. A.

N. A. Idris and H. Tsuda, “6.4-THz-spacing, 10-channel cyclic arrayed waveguide grating for T- and O-band coarse WDM,” IEICE Electron. Express 13(7), 1–7 (2010).

Johnson, C.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proceedings 18th High Performance Interconnects Conference, 113–116 (2010).
[Crossref]

Jouppi, N. P.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Joyner, C. H.

M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photonics Technol. Lett. 4(11), 1250–1253 (1992).
[Crossref]

Kanellos, G. T.

G. T. Kanellos and N. Pleros, “WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS,” Proc. SPIE 10109, 101090D (2017).

Khope, A. S. P.

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic WDM Switching for Scalable Data Center and HPC Interconnect Networks”, in Proceedings of OECC (2016), pp. 1–3.

Lam, C. F.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proceedings 18th High Performance Interconnects Conference, 113–116 (2010).
[Crossref]

Lang, T.

G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
[Crossref]

Leroy, F.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Li, L.

Li, Q.

Li, W.

Li, Y.

Liu, H.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proceedings 18th High Performance Interconnects Conference, 113–116 (2010).
[Crossref]

Markley, L.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

McLaren, M.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” in Proceedings of the IEEE, (IEEE, 2009), pp. 1166–1185.
[Crossref]

Muralimanohar, N.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Nikolova, D.

Okamoto, K.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,’,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, Y. Yin, and S. J. B. Yoo, “A scalable silicon photonic chip-scale optical switch for high performance computing systems,” Opt. Express 21(26), 32655–32667 (2013).
[Crossref] [PubMed]

Pang, A.

Papaioannou, S.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Pathak, S.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.

Pleros, N.

G. T. Kanellos and N. Pleros, “WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS,” Proc. SPIE 10109, 101090D (2017).

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Prinzen, A.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Proietti, R.

Qi, M.

Rosa, Á.

Rumley, S.

Saleh, A. A. M.

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic WDM Switching for Scalable Data Center and HPC Interconnect Networks”, in Proceedings of OECC (2016), pp. 1–3.

Samadi, P.

Sanchis, P.

Schreiber, R.

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Sheng, Z.

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

Song, G.

Stanton, E. J.

Su, T.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,’,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Tsuda, H.

N. A. Idris and H. Tsuda, “6.4-THz-spacing, 10-channel cyclic arrayed waveguide grating for T- and O-band coarse WDM,” IEICE Electron. Express 13(7), 1–7 (2010).

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

Van Thourhout, D.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.

Volet, N.

Vyrsokinos, K.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Wang, J.

Wang, X.

Weeber, J. C.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Wu, A.

Yin, Y.

Yoo, S. J. B.

Yu, R.

Zacharatos, F.

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

Zirngibl, M.

M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photonics Technol. Lett. 4(11), 1250–1253 (1992).
[Crossref]

Zou, J.

G. Song, J. Zou, and J. He, “Ultra-compact silicon-arrayed waveguide grating routers for optical interconnect systems,” Chin. Opt. Lett. 15(3), 030603 (2017).
[Crossref]

G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
[Crossref]

Zou, S.

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-Compact Silicon Photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,’,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 15x15 arrayed waveguide multiplexer on InP,” IEEE Photonics Technol. Lett. 4(11), 1250–1253 (1992).
[Crossref]

S. Papaioannou, G. Giannoulis, K. Vyrsokinos, F. Leroy, F. Zacharatos, L. Markley, J. C. Weeber, A. Dereux, S. I. Bolzhevolnyi, A. Prinzen, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Ultra-compact and low-power plasmonic MZI switch using Cyclomer loading,” IEEE Photonics Technol. Lett. 27(9), 963–966 (2015).
[Crossref]

IEICE Electron. Express (1)

N. A. Idris and H. Tsuda, “6.4-THz-spacing, 10-channel cyclic arrayed waveguide grating for T- and O-band coarse WDM,” IEICE Electron. Express 13(7), 1–7 (2010).

J. Lightwave Technol. (1)

Opt. Express (5)

Proc. SPIE (2)

G. Chen, J. Zou, T. Lang, and J. He, “Compact 4×4 1250 GHz silicon arrayed waveguide grating router for optical interconnects,” Proc. SPIE 9367, 936717 (2015).
[Crossref]

G. T. Kanellos and N. Pleros, “WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS,” Proc. SPIE 10109, 101090D (2017).

Other (13)

100G–CLR4 Alliance, “Specification for 100 Gb/s Coarse Wavelength Division Multiplex Optical Data Transmission”, https://www.clr4-alliance.org/media/doc/100G-CLR4-Specification_v1p52_FINAL

Bright Photonics B. V., http://brightphotonics.eu/

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakana, M. Ono, H. Sato, N. Kiel, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8x8 AWG Wavelength Router using Ultra Low Loss Polymer Optical Waveguide Material (CYTOPTM),” in Proceedings Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2008), pp. 1–3.

D. Seyringer, “Arrayed Waveguide Gratings,” in SPIE Spotlight Publications, (SPIE, 2016).

P. Dumon, W. Bogaerts, D. Van Thourhout, G. Mortier, and R. Baets, “A Nanophotonic 4x4 Wavelength Router in Silicon-on-Insulator,” in Proceedings Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OThO5.

Y. Chen, J. Zou, T. Lang, and J. He, “SOI-based Arrayed Waveguide Grating Router with grating couplers fabricated in a single shallow etching step,” in Proceedings Asia Communications and Photonics Conference, OSA Technical Digest (Optical Society of America, 2015), paper ASu2A.22.
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16x16 Channels Routers Based on Silicon-on-insulator AWGs,” in Proceedings of Annual Symposium of the IEEE Photonics Benelux Chapter(IEEE,2011), pp. 101–104.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proceedings 18th High Performance Interconnects Conference, 113–116 (2010).
[Crossref]

X. Leijtens, M. J. B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (2006).

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” in Proceedings of the IEEE, (IEEE, 2009), pp. 1166–1185.
[Crossref]

A. A. M. Saleh, A. S. P. Khope, J. E. Bowers, and R. C. Alferness, “Elastic WDM Switching for Scalable Data Center and HPC Interconnect Networks”, in Proceedings of OECC (2016), pp. 1–3.

R. Proietti, Z. Cao, Y. Li, and S. J. B. Yoo, “Scalable and distributed optical interconnect architecture based on AWGR for HPC and data centers,” in Proceedings Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2014), paper Th2A.59.
[Crossref]

N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn, “The role of optics in future high radix switch design,” in Proceedings 38th Annual International Symposium on Computer Architecture (ISCA), 437–447 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cyclic frequency operation in a N × N AWGR (N = 4). (b) Microscope image of the fabricated 8 × 8 AWGR.
Fig. 2
Fig. 2 Simulated spectral response of the 8 × 8 AWGR channels.
Fig. 3
Fig. 3 (a) Experimental setup used for the characterization of the 8 × 8 AWGR. (b) Measured spectral response of the 8 × 8 AWGR channels.
Fig. 4
Fig. 4 Experimental setup used for the data routing operation at 25 Gb/s.
Fig. 5
Fig. 5 BER measurements for transmission through (a) In1 to all output ports, (b) All input ports to Out1. Eye diagram of 25 Gb/s PRBS7-modulated signal at 1288.7 nm (c) at the input of the AWGR and (d) at the output of the AWGR after transmission through ports In1 Out7.

Tables (6)

Tables Icon

Table 1 Comparison between state-of-the-art AWGRs

Tables Icon

Table 2 Main design parameters of the 8 × 8 AWGR

Tables Icon

Table 3 Simulated channel peak wavelengths and insertion losses for all 8 × 8 AWGR port combinations

Tables Icon

Table 4 Measured channel peak wavelengths and peak insertion losses for all 8 × 8 port combinations.

Tables Icon

Table 5 (a) Power penalty values (dB) for data routing at 25 Gb/s for transmission at AWGR peak wavelengths. (b) Additional power penalty on top of the power penalty of the first scenario when transmitting at the mean wavelengths.

Tables Icon

Table 6 (a) Deviation of mean wavelengths from AWGR optimal resonances. (b) Standard deviation and range of mean wavelengths with respect to the AWGR peak resonances.

Metrics