Abstract

In this paper, InAs0.81Sb0.19-based hetero-junction photovoltaic detector (HJPD) with an In0.2Al0.8Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs0.81Sb0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm2/V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integration of an InSb photodetector on Si via heteroepitaxy for the mid-infrared wavelength region

Bo Wen Jia, Kian Hua Tan, Wan Khai Loke, Satrio Wicaksono, and Soon Fatt Yoon
Opt. Express 26(6) 7227-7234 (2018)

Metamorphic In0.20Ga0.80As p-i-n photodetectors grown on GaAs substrates for near infrared applications

K. Swaminathan, L.-M. Yang, T. J. Grassman, G. Tabares, A. Guzman, A. Hierro, M. J. Mills, and S. A. Ringel
Opt. Express 19(8) 7280-7288 (2011)

Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer

Katsuaki Tanabe, Denis Guimard, Damien Bordel, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 18(10) 10604-10608 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  2. A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
    [Crossref] [PubMed]
  3. J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
    [Crossref]
  4. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
    [Crossref]
  5. S. Kim, J. H. Han, J. P. Shim, H. J. Kim, and W. J. Choi, “Verification of Ge-on-insulator structure for Mid-infrared photonics platform,” Opt. Mater. Express 8(2), 440–451 (2018).
    [Crossref]
  6. C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
    [Crossref]
  7. A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
    [Crossref]
  8. A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
    [Crossref]
  9. A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
    [Crossref]
  10. W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
    [Crossref]
  11. J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
    [Crossref]
  12. H. Mohseni, J. D. Kim, and M. Razeghia, “Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5- to 8- μm wavelength range,” Proc. SPIE 3629, 357–364 (1999).
    [Crossref]
  13. H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
    [Crossref]
  14. R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
    [Crossref]
  15. C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
    [Crossref]
  16. M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
    [Crossref]
  17. Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
    [Crossref]
  18. G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
    [Crossref]
  19. S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
    [Crossref]
  20. E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
    [Crossref]
  21. R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeXSi1- x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
    [Crossref]
  22. J. E. Ayers, “Measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
    [Crossref]
  23. J. W. Harrison and J. R. Hauser, “Theoretical Calculation of Electron Mobility in Ternary III-V Compounds,” J. Appl. Phys. 47(1), 292–300 (1976).
    [Crossref]
  24. J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
    [Crossref]
  25. H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
    [Crossref]
  26. Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
    [Crossref]
  27. Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
    [Crossref]
  28. S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
    [Crossref]
  29. K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
    [Crossref]
  30. G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).
  31. H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).
  32. A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
    [Crossref]
  33. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  34. M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
    [Crossref]
  35. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996) Chap 6.
  36. https://www.hamamatsu.com/eu/en/product/category/3100/4007/4143/P13894-011NA/index.html (Hamamatsu, 2017).

2018 (1)

2017 (2)

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

2016 (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

2015 (3)

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

2014 (2)

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

2013 (5)

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

2012 (2)

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

2010 (4)

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2007 (2)

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
[Crossref]

2006 (1)

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

2001 (1)

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

2000 (1)

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

1999 (1)

H. Mohseni, J. D. Kim, and M. Razeghia, “Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5- to 8- μm wavelength range,” Proc. SPIE 3629, 357–364 (1999).
[Crossref]

1998 (1)

M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
[Crossref]

1995 (1)

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

1994 (1)

J. E. Ayers, “Measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
[Crossref]

1992 (1)

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

1988 (1)

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

1985 (1)

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeXSi1- x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

1976 (1)

J. W. Harrison and J. R. Hauser, “Theoretical Calculation of Electron Mobility in Ternary III-V Compounds,” J. Appl. Phys. 47(1), 292–300 (1976).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Andreev, I. A.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Aronov, D.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Ayers, J. E.

J. E. Ayers, “Measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
[Crossref]

Bean, J. C.

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeXSi1- x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

Bennett, B. R.

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

Berkowicz, E.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Besikci, C.

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Bigan, E.

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Borghs, G.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Camargo, E. G.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Chen, H.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

Chiles, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Choi, W. J.

S. Kim, J. H. Han, J. P. Shim, H. J. Kim, and W. J. Choi, “Verification of Ge-on-insulator structure for Mid-infrared photonics platform,” Opt. Mater. Express 8(2), 440–451 (2018).
[Crossref]

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Chyi, J. I.

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

Craig, A. P.

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

Cui, L.

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Cumming, D. R. S.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Dawson, L. R.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

De Boeck, J.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Dobbelaere, W.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Fatemi, M.

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

Fathpour, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Fisher, A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Fraenkel, A.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Gao, H.

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

Gautam, N.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Geum, D. M.

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Glozman, A.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Goto, H.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Grossmann, S.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Guan, M.

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Gunapala, S. D.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Han, J. H.

Harrison, J. W.

J. W. Harrison and J. R. Hauser, “Theoretical Calculation of Electron Mobility in Ternary III-V Compounds,” J. Appl. Phys. 47(1), 292–300 (1976).
[Crossref]

Hasegawa, R.

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

Hauser, J. R.

J. W. Harrison and J. R. Hauser, “Theoretical Calculation of Electron Mobility in Ternary III-V Compounds,” J. Appl. Phys. 47(1), 292–300 (1976).
[Crossref]

Hayakawa, Y.

S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
[Crossref]

Hengehold, R. L.

M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
[Crossref]

Heremans, P.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Hill, C. J.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Hoglund, L.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Ivanov, E. V.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Jayavel, P.

S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
[Crossref]

Jia, H.-Q.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Jiang, Z.

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

John, J.

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Johnson, S.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Kakimoto, K.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Kalem, S.

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

Kangawa, Y.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Katsumata, T.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Keo, S. A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Khalid, A.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

Khoshakhlagh, A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Kim, H.

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Kim, H. J.

Kim, H. S.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Kim, J. D.

H. Mohseni, J. D. Kim, and M. Razeghia, “Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5- to 8- μm wavelength range,” Proc. SPIE 3629, 357–364 (1999).
[Crossref]

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Kim, S.

S. Kim, J. H. Han, J. P. Shim, H. J. Kim, and W. J. Choi, “Verification of Ge-on-insulator structure for Mid-infrared photonics platform,” Opt. Mater. Express 8(2), 440–451 (2018).
[Crossref]

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Kim, S. H.

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Klein, B.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Klin, O.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Klipstein, P.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Konovalov, G. G.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Kopytko, M.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Kowalczyk, R.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Koyama, T.

S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
[Crossref]

Krier, A.

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

Krishna, S.

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Kumar, N. S.

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

Kutty, M. N.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Kuze, N.

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Lee, S. J.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Li, M.-C.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Li, W.

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

Li, Y.

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Lin-Chung, P. J.

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

Litton, C. W.

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

Liu, L.

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

Lukomsky, I.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Luyten, W.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Ma, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Maimon, S.

G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).

Marciniak, M. A.

M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
[Crossref]

Marshall, A. R. J.

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

Martyniuk, P.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Merken, P.

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Mertens, R.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Mikhailov, M. Yu.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Mikhailova, M. P.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Mohseni, H.

H. Mohseni, J. D. Kim, and M. Razeghia, “Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5- to 8- μm wavelength range,” Proc. SPIE 3629, 357–364 (1999).
[Crossref]

Moiseev, K. D.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Morishita, T.

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

Moriyasu, Y.

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

Morkoç, H.

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

Morre, W. J.

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

Moscicka, D.

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

Myers, S.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Nagase, K.

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

Nakamura, S.

S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
[Crossref]

Noh, S. K.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Ozer, S.

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Park, M. S.

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Pedrazzani, J. R.

G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).

People, R.

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeXSi1- x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

Piotrowski, J.

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Plis, E.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Pusino, V.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Razeghi, M.

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Razeghia, M.

H. Mohseni, J. D. Kim, and M. Razeghia, “Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5- to 8- μm wavelength range,” Proc. SPIE 3629, 357–364 (1999).
[Crossref]

Rhiger, D.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Rogalski, A.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Rosenberg, R.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Savich, G. R.

G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).

Shao, H.

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

Sharma, Y. D.

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

Shim, J. P.

Shtrichman, I.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Smith, E.

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Snapi, N.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Soibel, A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Song, J. D.

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Sorel, M.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Steer, M. J.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Sun, L.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Sun, Q.-L.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Thayne, I. G.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Thompson, M. D.

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

Tian, Z.

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

Tian, Z. B.

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

Ting, D. Z. Y.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

Torfi, A.

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

Turner, G. W.

M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
[Crossref]

Ueno, K.

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Van Hoof, C.

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Van Landuyt, J.

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Wang, B.

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Wang, C.

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Wang, L.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Wang, W.

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

Wang, W. I.

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

Wang, W.-Q.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Wang, W.-X.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Weiss, E.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Wicks, G. W.

G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).

Wojkowski, J.

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Wu, D.

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Xie, C.

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

Xu, J.

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

Yakovlev, Yu. P.

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

Yang, M. J.

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

Yassen, M.

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

Yeo, Y. K.

M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
[Crossref]

Yoshikawa, A.

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

Zeng, Y.

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Zhou, J.

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

Zhou, J.-M.

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

Zhu, Z.

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Zimmermann, L.

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Appl. Phys. Lett. (10)

A. P. Craig, A. R. J. Marshall, Z. B. Tian, S. Krishna, and A. Krier, “Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 p-i-n diodes, both grown on GaAs using interfacial misfit arrays,” Appl. Phys. Lett. 103(25), 253502 (2013).
[Crossref]

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 023512 (2014).
[Crossref]

W. Dobbelaere, J. De Boeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, “InAs0.85Sb0.15 infrared photodiodes grown on GaAs and GaAs-coated Si by molecular beam epitaxy,” Appl. Phys. Lett. 60(26), 3256–3258 (1992).
[Crossref]

J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett. 67(18), 2645–2647 (1995).
[Crossref]

R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeXSi1- x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47(3), 322–324 (1985).
[Crossref]

J. I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, “Growth of InSb and InAs1-xSbx on GaAs by molecular beam epitaxy,” Appl. Phys. Lett. 53(12), 1092–1094 (1988).
[Crossref]

S. H. Kim, D. M. Geum, M. S. Park, H. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Appl. Phys. Lett. 96, 1–4 (2010).

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Appl. Surf. Sci. (1)

Y. Li, Y. Zhang, Y. Zhang, B. Wang, Z. Zhu, and Y. Zeng, “Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates,” Appl. Surf. Sci. 258(17), 6571–6575 (2012).
[Crossref]

Chin. Phys. Lett. (1)

Q.-L. Sun, L. Wang, W.-Q. Wang, L. Sun, M.-C. Li, W.-X. Wang, H.-Q. Jia, J.-M. Zhou, and H. Chen, “Growth and Characterization of InAs 1–x Sb x with Different Sb Compositions on GaAs Substrates,” Chin. Phys. Lett. 32(10), 106801 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Shao, W. Li, A. Torfi, D. Moscicka, and W. I. Wang, “Room-temperature InAsSb photovoltaic detectors for mid-infrared applications,” IEEE Photonics Technol. Lett. 18(16), 1756–1758 (2006).
[Crossref]

IEEE Trans. Electron Dev. (1)

C. Xie, V. Pusino, A. Khalid, M. J. Steer, M. Sorel, I. G. Thayne, and D. R. S. Cumming, “Monolithic Integration of an Active InSb-Based Mid-Infrared Photopixel With a GaAs MESFET,” IEEE Trans. Electron Dev. 62(12), 4069–4075 (2015).
[Crossref]

J. Appl. Phys. (3)

M. J. Yang, B. R. Bennett, M. Fatemi, P. J. Lin-Chung, and W. J. Morre, “Photoluminescence of InAs1-xSbx/AlSb single quantum wells: x Transition from type-II to type-I band alignment,” J. Appl. Phys. 87(11), 8192–8194 (2000).
[Crossref]

J. W. Harrison and J. R. Hauser, “Theoretical Calculation of Electron Mobility in Ternary III-V Compounds,” J. Appl. Phys. 47(1), 292–300 (1976).
[Crossref]

M. A. Marciniak, R. L. Hengehold, Y. K. Yeo, and G. W. Turner, “Optical characterization of molecular beam epitaxially grown InAsSb nearly lattice matched to GaSb,” J. Appl. Phys. 84(1), 480–488 (1998).
[Crossref]

J. Cryst. Growth (5)

R. Hasegawa, A. Yoshikawa, T. Morishita, Y. Moriyasu, K. Nagase, and N. Kuze, “Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy,” J. Cryst. Growth 464, 211–214 (2017).
[Crossref]

S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, “Investigations on the effect of InSb and InAsSb step-graded buffer layers in InAs0.5Sb0.5 epilayers grown on GaAs (0 0 1),” J. Cryst. Growth 300(2), 497–502 (2007).
[Crossref]

E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs,” J. Cryst. Growth 339(1), 31–35 (2012).
[Crossref]

H. Gao, W. Wang, Z. Jiang, L. Liu, J. Zhou, and H. Chen, “The growth parameter influence on the crystal quality of InAsSb grown on GaAs by molecular beam epitaxy,” J. Cryst. Growth 308(2), 406–411 (2007).
[Crossref]

J. E. Ayers, “Measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth 135(1-2), 71–77 (1994).
[Crossref]

J. Phys. Conf. Ser. (1)

G. G. Konovalov, M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, M. Yu. Mikhailov, and Yu. P. Yakovlev, “Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb / InAsSb / AlSb Quantum Well in the Active Region for the Mid-infrared Spectral Range,” J. Phys. Conf. Ser. 461, 012026 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. R. Savich, J. R. Pedrazzani, S. Maimon, and G. W. Wicks, “Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers,” J. Vac. Sci. Technol. B 28(3), C3H18 (2010).

Jpn. J. Appl. Phys. (1)

K. Ueno, E. G. Camargo, T. Katsumata, H. Goto, N. Kuze, Y. Kangawa, and K. Kakimoto, “InSb Mid-Infrared Photon Detector for Room-Temperature Operation,” Jpn. J. Appl. Phys. 52(9R), 092202 (2013).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi Basic Res. (1)

Y. Zhang, Y. Zhang, M. Guan, L. Cui, C. Wang, and Y. Zeng, “Self-consistent analysis of InAsSb quantum-well heterostructures,” Phys. Status Solidi Basic Res. 251(11), 2287–2293 (2014).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Proc. SPIE (2)

H. Mohseni, J. D. Kim, and M. Razeghia, “Demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation in the 5- to 8- μm wavelength range,” Proc. SPIE 3629, 357–364 (1999).
[Crossref]

A. Khoshakhlagh, S. Myers, E. Plis, M. N. Kutty, B. Klein, N. Gautam, H. Kim, E. Smith, D. Rhiger, S. Johnson, and S. Krishna, “Mid-Wavelength InAsSb Detectors Based on nBn Design,” Proc. SPIE 7660, 76602Z (2010).
[Crossref]

Rep. Prog. Phys. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

A. P. Craig, M. D. Thompson, Z. Tian, S. Krishna, A. Krier, and A. R. J. Marshall, “InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance,” Semicond. Sci. Technol. 30(10), 105011 (2015).
[Crossref]

C. Besikci, S. Ozer, C. Van Hoof, L. Zimmermann, J. John, and P. Merken, “Characteristics of InAs0.8Sb0.2 photodetectors on GaAs substrates,” Semicond. Sci. Technol. 16(12), 992–996 (2001).
[Crossref]

Other (2)

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996) Chap 6.

https://www.hamamatsu.com/eu/en/product/category/3100/4007/4143/P13894-011NA/index.html (Hamamatsu, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Energy band diagram of HJPDs with different barrier layers under zero bias at room temperature. (b) Table of parameters for simulating the band diagram
Fig. 2
Fig. 2 (a) Threading dislocation density versus buffer layer thickness calculated from Ayers model (b) results of Hall measurement for this work and previous papers at room temperature as a function of Sb composition of InAs1-xSbx.
Fig. 3
Fig. 3 (a) Schematic structure of HJPD with In0.2Al0.8Sb grown on GaAs (b) measured θ-2θ results of MBE-grown reference p-i-n PD and HJPD compared to EPITAXY simulation (c) Schematic of finally fabricated HJPD and SEM image of the cleaved cross-section.
Fig. 4
Fig. 4 (a) current density (J)-voltage (V) curves for p-i-n PD and HJPD at room temperature and 100K (b) temperature dependent J-V curves for HJPD (b) temperature dependent dark current density-inverse temperature extracted at −10 mV (c) activation energy behavior for HJPD calculated by Eq. (1) in a temperature range from 220K to room temperature.
Fig. 5
Fig. 5 Photocurrent response measurements in FTIR system with different temperatures for (a) p-i-n PD (b) HJPD (c) simulation of optical intensity distribution as a function of wavelength for HJPD structure (d) temperature dependence of cutoff wavelength for HJPD and its fit by using Varshni expression of Eq. (2).
Fig. 6
Fig. 6 (a) Responsivity measurement of p-i-n PD and HJPD with 500K blackbody radiation. (b) Resistance-area product of HJPD depending on the voltages at 300K and 100K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J d ~  T 3 exp( E a k B T )
E g ( T )=  E g ( T=0 ) α T 2 (T+β)
R P = v o hc λ c 0 λ c M q  dλ  A s A d π r 2 t F F

Metrics