Abstract

The optomechanical interaction between a plasmonic nanocavity and a gold nanorod through optical forces is demonstrated. It is revealed that strong localized plasmon resonance mode hybridization induced by a gold nanorod results in the resonance mode of the nanocavity splitting into two different plasmon resonance modes (bonding plasmon resonance mode and antibonding plasmon resonance mode). When the whole system (gold nanorod and gold nanocavity) is excited at the antibonding plasmon mode, the gold nanorod can receive an optical pushing force and be pushed away from the gold nanocavity. On the other hand, an optical pulling force acts on the gold nanorod and the gold nanorod can be trapped by the gold nanocavity when the plasmonic tweezers work at the bonding mode. The optical pulling force acting on the gold nanorod can be enhanced by two orders of magnitude larger than that of the same sized dielectric nanorod, which benefits from the strong resonant nearfield interaction between the gold nanorod and the gold nanocavity. More importantly, the shape and the position of the optical potential can be tuned by tailoring the wavelength of the laser used in the optical trapping, which can be used to manipulate the gold nanorod within a nanoscale region. Our findings have important implications for optical trapping, manipulation, sorting, and sieving of plasmonic nanoparticles with plasmonic tweezers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su
Opt. Express 24(5) 4801-4811 (2016)

Gold nanorod assisted intracellular optical manipulation of silica microspheres

P. Haro-González, P. Rodríguez Sevilla, F. Sanz-Rodríguez, E. Martín Rodríguez, Nicoleta Bogdan, J.A. Capobianco, K. Dholakia, and D. Jaque
Opt. Express 22(16) 19735-19747 (2014)

Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]

Jiafang Li, Honglian Guo, and Zhi-Yuan Li
Photon. Res. 1(1) 28-41 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22(11), 816–818 (1997).
    [Crossref] [PubMed]
  3. S. Mohanty, J. Andrews, and P. Gupta, “Optical binding between dielectric particles,” Opt. Express 12(12), 2746–2753 (2004).
    [Crossref] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  5. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
    [Crossref] [PubMed]
  6. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  7. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  8. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  9. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
    [Crossref] [PubMed]
  10. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [Crossref] [PubMed]
  11. R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
    [Crossref] [PubMed]
  12. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  13. Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13(5), 2146–2150 (2013).
    [Crossref] [PubMed]
  14. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  15. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  16. R. Sainidou and F. J. García de Abajo, “Optically tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
    [Crossref] [PubMed]
  17. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  18. A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).
  19. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
    [Crossref] [PubMed]
  20. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
    [Crossref] [PubMed]
  21. H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
    [Crossref] [PubMed]
  22. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
    [Crossref] [PubMed]
  23. A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
    [Crossref] [PubMed]
  24. A. A. Al Balushi, A. Zehtabi-Oskuie, and R. Gordon, “Observing single protein binding by optical transmission through a double nanohole aperture in a metal film,” Biomed. Opt. Express 4(9), 1504–1511 (2013).
    [Crossref] [PubMed]
  25. A. Kotnala and R. Gordon, “Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins,” Biomed. Opt. Express 5(6), 1886–1894 (2014).
    [Crossref] [PubMed]
  26. J. D. Kim and Y. G. Lee, “Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications,” Biomed. Opt. Express 5(8), 2471–2480 (2014).
    [Crossref] [PubMed]
  27. A. A. Al Balushi and R. Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Lett. 14(10), 5787–5791 (2014).
    [Crossref] [PubMed]
  28. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  29. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  30. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
    [Crossref] [PubMed]
  31. P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
    [Crossref]
  32. L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
    [Crossref]
  33. M. S. Aporvari, F. Kheirandish, and G. Volpe, “Optical trapping and control of a dielectric nanowire by a nanoaperture,” Opt. Lett. 40(20), 4807–4810 (2015).
    [Crossref] [PubMed]
  34. Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
    [Crossref]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  36. A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
    [Crossref] [PubMed]
  37. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [Crossref] [PubMed]
  38. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
    [Crossref] [PubMed]
  39. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]

2016 (2)

H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
[Crossref] [PubMed]

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]

2015 (2)

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

M. S. Aporvari, F. Kheirandish, and G. Volpe, “Optical trapping and control of a dielectric nanowire by a nanoaperture,” Opt. Lett. 40(20), 4807–4810 (2015).
[Crossref] [PubMed]

2014 (6)

Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins,” Biomed. Opt. Express 5(6), 1886–1894 (2014).
[Crossref] [PubMed]

J. D. Kim and Y. G. Lee, “Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications,” Biomed. Opt. Express 5(8), 2471–2480 (2014).
[Crossref] [PubMed]

A. A. Al Balushi and R. Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Lett. 14(10), 5787–5791 (2014).
[Crossref] [PubMed]

2013 (3)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13(5), 2146–2150 (2013).
[Crossref] [PubMed]

A. A. Al Balushi, A. Zehtabi-Oskuie, and R. Gordon, “Observing single protein binding by optical transmission through a double nanohole aperture in a metal film,” Biomed. Opt. Express 4(9), 1504–1511 (2013).
[Crossref] [PubMed]

2012 (4)

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

2011 (2)

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (2)

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

2009 (2)

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2008 (3)

R. Sainidou and F. J. García de Abajo, “Optically tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

2007 (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

2006 (1)

2005 (2)

A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2002 (1)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

1997 (1)

1994 (1)

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1986 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Acimovic, S. S.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Al Balushi, A. A.

Al-Balushi, A. A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

Altug, H.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Andrews, J.

Aporvari, M. S.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Berthelot, J.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Busnaina, A.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Cetin, A. E.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Chang, D. E.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Choi, B. C.

H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
[Crossref] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S.

Cyr, B. R.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

Dai, Q.

Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
[Crossref]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

R. Sainidou and F. J. García de Abajo, “Optically tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gordon, R.

H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

A. A. Al Balushi and R. Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Lett. 14(10), 5787–5791 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins,” Biomed. Opt. Express 5(6), 1886–1894 (2014).
[Crossref] [PubMed]

A. A. Al Balushi, A. Zehtabi-Oskuie, and R. Gordon, “Observing single protein binding by optical transmission through a double nanohole aperture in a metal film,” Biomed. Opt. Express 4(9), 1504–1511 (2013).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Gray, S. K.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Guffey, M. J.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref] [PubMed]

Gupta, P.

Guyot-Sionnest, P.

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
[Crossref]

Jiang, H.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Jones, S.

H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
[Crossref] [PubMed]

Juan, M. L.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

Kaneda, S.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13(5), 2146–2150 (2013).
[Crossref] [PubMed]

Kheirandish, F.

Kim, H. Y.

Kim, J. D.

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Kobayashi, T.

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins,” Biomed. Opt. Express 5(6), 1886–1894 (2014).
[Crossref] [PubMed]

Kreuzer, M. P.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Lan, S.

Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
[Crossref]

Lee, Y. G.

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Liu, M.

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Mansuripur, M.

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Mestres, P.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Mohanty, S.

Moloney, J.

Neumeier, L.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Nome, R. A.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Omori, R.

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Pelton, M.

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Quidant, R.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Renger, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Rennehan, D. W.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Sainidou, R.

R. Sainidou and F. J. García de Abajo, “Optically tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Sasaki, K.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13(5), 2146–2150 (2013).
[Crossref] [PubMed]

Scherer, N. F.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[Crossref] [PubMed]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Smith, G.

Somu, S.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Suzuki, A.

Svoboda, K.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

Tanaka, Y.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13(5), 2146–2150 (2013).
[Crossref] [PubMed]

Tie, S.

Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
[Crossref]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Volpe, G.

M. S. Aporvari, F. Kheirandish, and G. Volpe, “Optical trapping and control of a dielectric nanowire by a nanoaperture,” Opt. Lett. 40(20), 4807–4810 (2015).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

Xu, H.

H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
[Crossref] [PubMed]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Yanik, A. A.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Yilmaz, C.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Zakharian, A.

Zehtabi-Oskuie, A.

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98(11), 111110 (2011).

Biomed. Opt. Express (3)

J. Phys. Chem. A (1)

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref] [PubMed]

Light Sci. Appl. (1)

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]

Nano Lett. (11)

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

A. A. Al Balushi and R. Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Lett. 14(10), 5787–5791 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

H. Xu, S. Jones, B. C. Choi, and R. Gordon, “Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers,” Nano Lett. 16(4), 2639–2643 (2016).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13(5), 2146–2150 (2013).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Nat. Phys. (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref] [PubMed]

New J. Phys. (1)

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref] [PubMed]

R. Sainidou and F. J. García de Abajo, “Optically tunable surfaces with trapped particles in microcavities,” Phys. Rev. Lett. 101(13), 136802 (2008).
[Crossref] [PubMed]

Plasmonics (1)

Z. Huang, Q. Dai, S. Lan, and S. Tie, “Numerical study of nanoparticle sensors based on the detection of the two-photon-induced luminescence of gold nanorod antennas,” Plasmonics 9(6), 1491–1500 (2014).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “Hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the plasmonic trapping system composed of a nanoaperture drilled in a gold film. The gold nanorod moves towards the center of the nanoaperture along with X direction (blue dashed arrow) (a), Z direction (blue dashed arrow) (b), and Y direction (blue dashed arrow) (c), respectively. (d), (e), and (f) Evolutions of the corresponding scattering spectra when the gold nanorod moves towards the center of the nanoaperture along with three representative motion directions. In (a) and (c), h = 35 nm.
Fig. 2
Fig. 2 Panel (a) shows the scattering cross sections of a single gold nanorod (upper panel), the gold nanorod placed 35 nm above the center of the gold nanoaperture (middle panel), and the single gold nanoaperture (lower panel). The maximum resonant wavelengths are indicated with red arrows (b) an energy-level diagram describing the plasmonic modes hybridization between the nanoaperture and gold nanorod. The charge distributions in the cross section along the longitudinal axis for the gold nanorod and upper surface for the gold nanoaperture associated with each plasmonic resonance mode are shown with (1) plasmonic dipolar mode of gold nanorod, (2) plasmonic dipolar mode of gold nanoaperture, (3) and (4) antibonding mode and bonding mode of the whole system (the gold nanorod and the gold nanoaperture). The charge distributions of gold nanorod and nanoaperture in (3) and (4) are artificially overlapped for better visualization.
Fig. 3
Fig. 3 (a) Lateral optical pushing force Fx (black square) and longitudinal pushing Fz (red circle) acting on the gold nanorod at antibonding mode (λ = 643 nm) when the gold nanorod moves towards the center of the nanohole. (b) Lateral optical pulling force Fx (black square) and longitudinal pulling Fz (red circle) acting on the gold nanorod at bonding mode (λ = 781 nm) when the gold nanorod moves towards the center of the nanohole. (c) Scattering cross section of the gold nanoaperture with (black solid line) and without a dielectric nanorod (red dash line) with the same size of the gold nanorod. (d) Lateral optical force Fx (black square) and longitudinal Fz (red circle) acting on the dielectric nanorod at the resonant wavelength (λ = 742 nm) when the dielectric nanorod moves towards the center of the nanohole.
Fig. 4
Fig. 4 Lateral optical force Fx (a) and longitudinal Fz (b) acting on the gold nanorod at λ = 731, 751, 771 and 791 nm when the gold nanorod approaches the nanoaperture along with X direction. (c) The lateral trapping potential U(x). The trapping potentials are normalized with the kinetic energy of Brown motion (KBT).
Fig. 5
Fig. 5 Electric intensity distributions in X-Y plane placed above 10 nm away from the upper surface of the gold film at λ = 731 nm for d = 200 nm (a), 100 nm (b), and 0 nm (c). Electric intensity distributions in X-Y plane placed above 10 nm away from the upper surface of the gold film at λ = 781 nm for d = 200 nm (d), 100 nm (e), and 0 nm (f). All these figures share the same color scale. In call cases, the rectangle and the circle show the positions of the gold nanorod and the nanohole, respectively.
Fig. 6
Fig. 6 (a) Longitudinal pulling optical force Fz acting on the gold nanorod at λ = 731, 751, 771 and 791 nm when the gold nanorod approaches the nanoapture along with z direction. (b) Relative optical potential U (z) at λ = 731, 751, 771 and 791 nm. The trapping potentials are normalized with the kinetic energy of Brown motion (KBT).
Fig. 7
Fig. 7 (a) Lateral optical pulling force Fy and (b) longitudinal optical pulling force Fz acting on the gold nanorod at λ = 731, 751, 771 and 791 nm when the gold nanorod approaches the nanoaperture along with y direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F= V F d dV,
F d = ε b (E)E+iω(ε ε b )E×μH,
F(r)=U(r).

Metrics