Abstract

We design and implement a cost-effective and compact 100-Gb/s (2 × 50 Gb/s) PAM-4 receiver optical sub-assembly (ROSA) by using a TO-can package instead of an expensive box-type package. It consists of an optical demultiplexer, two PIN-PDs and a 2-channel linear transimpedance amplifier. The components are passively aligned and assembled using alignment marks engraved on each part. With a real-time PAM-4 DSP chip, we measured the back-to-back receiver sensitivities of the 100-Gb/s ROSA based on TO-56 to be less than -13.2 dBm for both channels at a bit error rate of 2.4e-4. The crosstalk penalty due to the adjacent channel interference was observed around 0.1 dB.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer

Joon Young Huh, Sae-Kyoung Kang, Jie Hyun Lee, Joon Ki Lee, and SunMe Kim
Opt. Express 24(24) 27104-27114 (2016)

Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25 Gb/s ROSA module

Joon Ki Lee, Joon Young Huh, Sae-Kyoung Kang, and Youn-Seon Jang
Opt. Express 22(4) 4307-4315 (2014)

Low-cost hybrid integrated 4 × 25  GBaud PAM-4 CWDM ROSA with a PLC-based arrayed waveguide grating de-multiplexer

Lei Liu, Limin Chang, Yingxin Kuang, Zezheng Li, Yang Liu, Huan Guan, Manqing Tan, Yude Yu, and Zhiyong Li
Photon. Res. 7(7) 722-727 (2019)

References

  • View by:
  • |
  • |
  • |

  1. IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force, http://www.ieee802.org/3/cd .
  2. IEEE 802.3bs, “Media access control parameters, physical layers and management parameters for 200 Gb/s and 400 Gb/s operation,” http://www.ieee802.org/3/bs .
  3. IEEE P802.3ca 100G-EPON Task Force, http://www.ieee802.org/3/ca .
  4. J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
    [Crossref]
  5. Y. Doi, Y. Nakanishi, T. Yoshimatsu, T. Ohno, and H. Sanjo, “Compact 8-wavelength receiver optical sub-assembly with a low-loss AWG demultiplexer for 400-Gigabit datacom,” ECOC 2015, paper Tu.1.3.2 (2015).
    [Crossref]
  6. J. Gao, “Demonstration of the first 29dB power budget of 25-Gb/s 4-PAM system without optical amplifier for next generation access network,” OFC 2016, paper Th1I.2 (2016).
    [Crossref]
  7. M. Mazzini, M. Traverso, M. Webster, C. Muzio, S. Anderson, P. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, M. Nyland, C. Togami, K. Yanushefski, and T. Daugherty, “25GBaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” OFC 2015, paper Th5B.3 (2015).
  8. F. Chang, S. Bhoja, J. Riani, I. Hosagrahar, J. Wu, S. Herlekar, A. Tiruvur, P. Khandelwal, and K. Gopalakrishnan, “Link performance investigation of industry first 100G PAM4 IC chipset with real-time DSP for data center connectivity,” OFC 2016, paper Th1G.2 (2016).
    [Crossref]
  9. Source Photonics, “Demonstration of a 2 × 50G-PAM4 QSFP28 100G module at OFC 2016,” http://www.sourcephotonics.com/newspage/page/3 .
  10. J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Griesser, “PAM-4 vs coherent for DCI applications,” SPPCom 2017, paper SpTh2D (2017).
  11. T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).
  12. T. Yoshimatsu, M. Nada, M. Oguma, H. Yokoyama, T. Ohno, Y. Doi, I. Ogawa, H. Takahashi, and E. Yoshida, “Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt. Express 20(26), B393–B398 (2012).
    [Crossref] [PubMed]
  13. J. K. Lee, J. Y. Huh, S.-K. Kang, and Y.-S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25 Gb/s ROSA module,” Opt. Express 22(4), 4307–4315 (2014).
    [Crossref] [PubMed]
  14. J. Y. Huh, S.-K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24(24), 27104–27114 (2016).
    [Crossref] [PubMed]
  15. S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
    [Crossref]
  16. W. Kobayashi, K. Tsuzuki, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “Large bandwidth TO-can module with LCP based transmission line as serial 40-Gb/s 1.3/1.55-um lightsource,” ISLC 2010, paper ThB4 (2010).
  17. S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
    [Crossref]

2016 (2)

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

J. Y. Huh, S.-K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24(24), 27104–27114 (2016).
[Crossref] [PubMed]

2015 (1)

J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

2014 (2)

J. K. Lee, J. Y. Huh, S.-K. Kang, and Y.-S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25 Gb/s ROSA module,” Opt. Express 22(4), 4307–4315 (2014).
[Crossref] [PubMed]

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

2013 (1)

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

2012 (1)

Doi, Y.

Fujimura, Y.

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Huh, J. Y.

J. Y. Huh, S.-K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24(24), 27104–27114 (2016).
[Crossref] [PubMed]

J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

J. K. Lee, J. Y. Huh, S.-K. Kang, and Y.-S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25 Gb/s ROSA module,” Opt. Express 22(4), 4307–4315 (2014).
[Crossref] [PubMed]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

Jang, Y.-S.

Kang, S.-K.

J. Y. Huh, S.-K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24(24), 27104–27114 (2016).
[Crossref] [PubMed]

J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

J. K. Lee, J. Y. Huh, S.-K. Kang, and Y.-S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25 Gb/s ROSA module,” Opt. Express 22(4), 4307–4315 (2014).
[Crossref] [PubMed]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

Kim, K.

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

Kim, S.

Kurokawa, M.

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Lee, J. C.

J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

Lee, J. H.

J. Y. Huh, S.-K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24(24), 27104–27114 (2016).
[Crossref] [PubMed]

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

Lee, J. K.

J. Y. Huh, S.-K. Kang, J. H. Lee, J. K. Lee, and S. Kim, “Highly alignment tolerant and high-sensitivity 100Gb/s (4 × 25Gb/s) APD-ROSA with a thin-film filter-based de-multiplexer,” Opt. Express 24(24), 27104–27114 (2016).
[Crossref] [PubMed]

J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

J. K. Lee, J. Y. Huh, S.-K. Kang, and Y.-S. Jang, “Analysis of dimensional tolerance for an optical demultiplexer of a highly alignment tolerant 4 × 25 Gb/s ROSA module,” Opt. Express 22(4), 4307–4315 (2014).
[Crossref] [PubMed]

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

Nada, M.

Ogawa, I.

Oguma, M.

Ohno, T.

Saeki, T.

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Sato, S.

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Suzuki, M.

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Takahashi, H.

Tanaka, K.

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Yokoyama, H.

Yoshida, E.

Yoshimatsu, T.

Electron. Lett. (1)

S.-K. Kang, J. K. Lee, J. Y. Huh, K. Kim, and J. H. Lee, “Miniaturized 43 Gbit/s ROSA module using TO-can package for optical transceivers,” Electron. Lett. 50(7), 530–531 (2014).
[Crossref]

ETRI J. (2)

S.-K. Kang, J. K. Lee, J. Y. Huh, J. C. Lee, K. Kim, and J. H. Lee, “A cost-effective 40-Gb/s ROSA module employing compact TO-can package,” ETRI J. 35(1), 1–6 (2013).
[Crossref]

J. Y. Huh, J. K. Lee, S.-K. Kang, and J. C. Lee, “Pseudo optical PAM-N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

Opt. Express (3)

SEI Tech. Rev. (1)

T. Saeki, S. Sato, M. Kurokawa, M. Suzuki, K. Tanaka, and Y. Fujimura, “Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s,” SEI Tech. Rev. 82, 107–111 (2016).

Other (10)

W. Kobayashi, K. Tsuzuki, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “Large bandwidth TO-can module with LCP based transmission line as serial 40-Gb/s 1.3/1.55-um lightsource,” ISLC 2010, paper ThB4 (2010).

IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force, http://www.ieee802.org/3/cd .

IEEE 802.3bs, “Media access control parameters, physical layers and management parameters for 200 Gb/s and 400 Gb/s operation,” http://www.ieee802.org/3/bs .

IEEE P802.3ca 100G-EPON Task Force, http://www.ieee802.org/3/ca .

Y. Doi, Y. Nakanishi, T. Yoshimatsu, T. Ohno, and H. Sanjo, “Compact 8-wavelength receiver optical sub-assembly with a low-loss AWG demultiplexer for 400-Gigabit datacom,” ECOC 2015, paper Tu.1.3.2 (2015).
[Crossref]

J. Gao, “Demonstration of the first 29dB power budget of 25-Gb/s 4-PAM system without optical amplifier for next generation access network,” OFC 2016, paper Th1I.2 (2016).
[Crossref]

M. Mazzini, M. Traverso, M. Webster, C. Muzio, S. Anderson, P. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, M. Nyland, C. Togami, K. Yanushefski, and T. Daugherty, “25GBaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics,” OFC 2015, paper Th5B.3 (2015).

F. Chang, S. Bhoja, J. Riani, I. Hosagrahar, J. Wu, S. Herlekar, A. Tiruvur, P. Khandelwal, and K. Gopalakrishnan, “Link performance investigation of industry first 100G PAM4 IC chipset with real-time DSP for data center connectivity,” OFC 2016, paper Th1G.2 (2016).
[Crossref]

Source Photonics, “Demonstration of a 2 × 50G-PAM4 QSFP28 100G module at OFC 2016,” http://www.sourcephotonics.com/newspage/page/3 .

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Griesser, “PAM-4 vs coherent for DCI applications,” SPPCom 2017, paper SpTh2D (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic view and expected shape of the proposed 100-Gb/s PAM-4 ROSA.
Fig. 2
Fig. 2 Design of high-speed signal path: (a) 3-D modeling and (b) simulated results.
Fig. 3
Fig. 3 Design of TO-to-FPCB signal path: (a) 3-D modeling and (b) simulated results.
Fig. 4
Fig. 4 Measured diameter of the collimated beam diameter of the receptacle-collimator. Inset is a schematic of receptacle-collimator.
Fig. 5
Fig. 5 Fabrication process: (a) integration of key components by alignment marks on each part, (b) optical alignment schematic between a receptacle-collimator and a TO block and (c) measured photocurrents on x-axis positions of the receptacle-collimator.
Fig. 6
Fig. 6 Photographs of the 100-Gb/s PAM-4 ROSA.
Fig. 7
Fig. 7 (a) Experimental setup for observing output waveform of ROSA and (b) converted electrical waveforms from ROSA at 26.56-Gbaud data rate.
Fig. 8
Fig. 8 (a) Measured wavelength transmission spectra of ROSA and (b) O/E bandwidth and electrical return loss of ROSA.
Fig. 9
Fig. 9 BER performance: (a) experimental setup and (b) measured BER.

Metrics