Abstract

Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Uncooled 2.5 Gb/s operation of 1.3 μm GaInNAs DQW lasers over a wide temperature range

Yongqiang Wei, Johan S. Gustavsson, Mahdad Sadeghi, Shumin Wang, Anders Larsson, Pekka Savolainen, Petri Melanen, and Pekko Sipilä
Opt. Express 14(7) 2753-2759 (2006)

Vertical-cavity surface-emitting lasers for data communication and sensing

Anjin Liu, Philip Wolf, James A. Lott, and Dieter Bimberg
Photon. Res. 7(2) 121-136 (2019)

Experimental characterization of high-speed 1.55 μm buried heterostructure InGaAsP/InGaAlAs quantum-well lasers

M. Nadeem Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier
J. Opt. Soc. Am. B 26(2) 318-327 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
    [Crossref]
  2. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  3. Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
    [Crossref]
  4. H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
    [Crossref]
  5. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
    [Crossref]
  6. C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100),” Appl. Phys. Lett. 96(19), 191903 (2010).
    [Crossref]
  7. C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
    [Crossref]
  8. S. Banyoudeh and J. P. Reithmaier, “High-density 1.54μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
    [Crossref]
  9. S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
    [Crossref]
  10. D. Gready and G. Eisenstein, “Carrier Dynamics and Modulation Capabilities of Quantum Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).
  11. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, 2nd ed. N. J. Hoboken,: (Wiley, 2012).
  12. D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
    [Crossref]
  13. T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
    [Crossref]
  14. T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
    [Crossref]
  15. B. Stegmüller, B. Borchert, and R. Gessner, “1.57 pm Strained-Layer Quantum-Well GaInAlAs Ridge-Waveguide Laser Diodes with High Temperature (130 °C) and Ultrahigh-speed (17 GHz) Performance,” IEEE Photonics Technol. Lett. 5(6), 597–598 (1993).
    [Crossref]
  16. A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
    [Crossref]
  17. I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
    [Crossref]

2016 (1)

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

2015 (1)

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

2013 (1)

D. Gready and G. Eisenstein, “Carrier Dynamics and Modulation Capabilities of Quantum Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).

2011 (1)

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

2010 (1)

C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100),” Appl. Phys. Lett. 96(19), 191903 (2010).
[Crossref]

2009 (1)

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

2005 (1)

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

2003 (2)

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

2000 (1)

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

1999 (1)

A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
[Crossref]

1997 (3)

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
[Crossref]

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

1993 (1)

B. Stegmüller, B. Borchert, and R. Gessner, “1.57 pm Strained-Layer Quantum-Well GaInAlAs Ridge-Waveguide Laser Diodes with High Temperature (130 °C) and Ultrahigh-speed (17 GHz) Performance,” IEEE Photonics Technol. Lett. 5(6), 597–598 (1993).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Abdollahinia, A.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

Adams, A. R.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
[Crossref]

Alizon, R.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Andreev, A. D.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Bansropun, S.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Banyoudeh, S.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

Bar-Chaim, N.

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

Berg, T. W.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Bhat, R.

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

Bhattacharya, P.

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

Bilenca, A.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Borchert, B.

B. Stegmüller, B. Borchert, and R. Gessner, “1.57 pm Strained-Layer Quantum-Well GaInAlAs Ridge-Waveguide Laser Diodes with High Temperature (130 °C) and Ultrahigh-speed (17 GHz) Performance,” IEEE Photonics Technol. Lett. 5(6), 597–598 (1993).
[Crossref]

Calligaro, M.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Caneau, C.

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Chen, P. C.

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

Chen, T. R.

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

Dery, H.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Deubert, S.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Eisenstein, G.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

D. Gready and G. Eisenstein, “Carrier Dynamics and Modulation Capabilities of Quantum Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Eyal, O.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

Fiore, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Forchel, A.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Gessner, R.

B. Stegmüller, B. Borchert, and R. Gessner, “1.57 pm Strained-Layer Quantum-Well GaInAlAs Ridge-Waveguide Laser Diodes with High Temperature (130 °C) and Ultrahigh-speed (17 GHz) Performance,” IEEE Photonics Technol. Lett. 5(6), 597–598 (1993).
[Crossref]

Gilfert, C.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100),” Appl. Phys. Lett. 96(19), 191903 (2010).
[Crossref]

Gionnini, M.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Gready, D.

D. Gready and G. Eisenstein, “Carrier Dynamics and Modulation Capabilities of Quantum Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).

Hadass, D.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Higashi, T.

T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
[Crossref]

Ivanov, V.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

Jo, B.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Kaiser, W.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Kamei, A.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Kim, J.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Kim, J. S.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Klotzkin, D.

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

Kobayashi, M.

T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
[Crossref]

Krakowski, M.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Krebs, R.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

Lee, C.-R.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Leem, J.-Y.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Marko, I. P.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

Markus, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Mikhelashvili, V.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Montrosset, I.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Mork, J.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Newkirk, M. A.

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

Nishi, K.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Oehl, N.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

Ogita, S.

T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
[Crossref]

Oh, D. K.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Oh, S.

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Parillaud, O.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Pavelescu, E.-M.

C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100),” Appl. Phys. Lett. 96(19), 191903 (2010).
[Crossref]

Phillips, A. F.

A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
[Crossref]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Reithmaier, J. P.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100),” Appl. Phys. Lett. 96(19), 191903 (2010).
[Crossref]

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

Resneau, P.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Saito, H.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Schnabel, F.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

Sichkovskyi, V.

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

Somers, A.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Stegmüller, B.

B. Stegmüller, B. Borchert, and R. Gessner, “1.57 pm Strained-Layer Quantum-Well GaInAlAs Ridge-Waveguide Laser Diodes with High Temperature (130 °C) and Ultrahigh-speed (17 GHz) Performance,” IEEE Photonics Technol. Lett. 5(6), 597–598 (1993).
[Crossref]

Sugou, S.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Sweeney, S.

A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
[Crossref]

Syao, K.-C.

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

Thijs, P. J. A.

A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
[Crossref]

Tromborg, B.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Ungar, J.

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

van der Poel, M.

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Yacob, M.

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

Yamamoto, T.

T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
[Crossref]

Yang, Y.

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

Appl. Phys. Lett. (4)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100),” Appl. Phys. Lett. 96(19), 191903 (2010).
[Crossref]

C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 µm diode lasers based on InAs dot like active regions,” Appl. Phys. Lett. 98(20), 201102 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Gready and G. Eisenstein, “Carrier Dynamics and Modulation Capabilities of Quantum Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).

T. Higashi, T. Yamamoto, S. Ogita, and M. Kobayashi, “Experimental Analysis of Charactersitic Temperature in Quantum-Well Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 513–521 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar-Chaim, “Low-Threshold and High-Temperature Operation of InGaAlAs-InP Lasers,” IEEE Photonics Technol. Lett. 9(1), 17–18 (1997).
[Crossref]

B. Stegmüller, B. Borchert, and R. Gessner, “1.57 pm Strained-Layer Quantum-Well GaInAlAs Ridge-Waveguide Laser Diodes with High Temperature (130 °C) and Ultrahigh-speed (17 GHz) Performance,” IEEE Photonics Technol. Lett. 5(6), 597–598 (1993).
[Crossref]

S. Banyoudeh, A. Abdollahinia, O. Eyal, F. Schnabel, V. Sichkovskyi, G. Eisenstein, and J. P. Reithmaier, “Temperature-Insensitive High-Speed Directly Modulated 1.55 µm Quantum Dot Lasers,” IEEE Photonics Technol. Lett. 28(21), 2451–2454 (2016).
[Crossref]

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

IEEE Sel. Top. Quant. Electron. (1)

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, “Role of Auger Recombination in InAs 1.3-µm Quantum-Dot Lasers Ivnerstiagtd usign High Hydrostatic Pressure,” IEEE Sel. Top. Quant. Electron. 9(5), 1300–1307 (2003).
[Crossref]

IEEE. J. Sel. Top. Quant. Electron. (1)

A. F. Phillips, S. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature dependence of 1.3 and 1.5-µm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE. J. Sel. Top. Quant. Electron. 5(3), 401–412 (1999).
[Crossref]

J. Appl. Phys. (1)

Y. Yang, B. Jo, J. Kim, C.-R. Lee, J. S. Kim, D. K. Oh, J. S. Kim, and J.-Y. Leem, “Optical stability of shape-engineered InAs/InAlGaAs quantum dots,” J. Appl. Phys. 105(5), 053510 (2009).
[Crossref]

J. Cryst. Growth (1)

S. Banyoudeh and J. P. Reithmaier, “High-density 1.54μm InAs/InGaAlAs/InP(100) based quantum dots with reduced size inhomogeneity,” J. Cryst. Growth 425, 299–302 (2015).
[Crossref]

J. Lightwave Technol. (1)

D. Klotzkin, K.-C. Syao, P. Bhattacharya, C. Caneau, and R. Bhat, “Modulation Characteristics of High Speed (f-3 dB = 20 GHz) Tunneling Injection InP/InGaAsP 1.55 µm Ridge Waveguide Lasers Extracted from Optical and Electrical Measurements,” J. Lightwave Technol. 15(11), 2141–2146 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. P. Reithmaier, A. Somers, S. Deubert, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gionnini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[Crossref]

Other (1)

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, 2nd ed. N. J. Hoboken,: (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic energy diagram of the epitaxial layer structure for a high-speed QD laser, here illustrated with 6 QD layers (QDLs). Layer thicknesses are in nm.
Fig. 2
Fig. 2 Temperature dependence of emission wavelength for the 6-QD-layer-RWG laser under CW and pulsed conditions. For pulsed conditions a pulse width of 500 ns with a duty cycle of 0.03% were used. The inset shows the corresponding spectra at 20 °C and a bias current of 25 mA. All measurements are performed near threshold.
Fig. 3
Fig. 3 PIV curves of a 338-µm-long RWG laser with 6 QDLs at CW and pulsed conditions.
Fig. 4
Fig. 4 V-I curves for a short-cavity RWG laser, 338 µm (6 QDLs), compared with a longer one, 893 µm (8 QDLs). Inset: the series resistance and the turn-on voltages.
Fig. 5
Fig. 5 PI curves for a long-cavity RWG laser, 893 µm, showing a high slope efficiency stability up to 160 °C and 80 °C at pulsed (right) and CW (left), respectively.
Fig. 6
Fig. 6 Characteristic temperatures T0 and T1 for RWG lasers of 893 × 2.25 µm2 at two structures with 6 and 8 QD layers.
Fig. 7
Fig. 7 Temperature stability dependency on cavity length for 1.75-µm-wide RWGs with 6 QDLs with lengths of 338, 620, and 886 µm.
Fig. 8
Fig. 8 Temperature dependency of internal quantum efficiency and internal loss for 8 QDL structure at CW. Inset shows fitting of different cavity length lasers 303, 393, 646, 1437 µm with same widths of 2.00 µm at 10 °C.
Fig. 9
Fig. 9 Small-signal modulation response of the 338 µm RWG with 6 QDLs. The −3dB bandwidth measured under CW for 160 mA is 17.45 GHz
Fig. 10
Fig. 10 Variation of damping factor with the square of the resonance frequency obtained from the analysis of small signal modulation response for a 338- and 303-µm-long RWG laser with 6 and 8 QD layers, respectively. The K-factor from the slopes (linear fit) are approximated to 0.30 and 0.27 ns at 20 °C, respectively. Inset shows the stability (linearity) at high temperature of 80 °C.
Fig. 11
Fig. 11 The measured and calculated maximum intrinsic modulation bandwidths for both the 6- and 8-QD-layer lasers with cavity sizes of 338 × 1.75 and 303 × 2.00 µm2, respectively.
Fig. 12
Fig. 12 Large signal modulation of the 8 QDLs at 80 °C showing a record bitrate of 26 Gbit/s (left). The highest data rate by PAM4 modulation is 50 GBit/s at 21 °C (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| M(f) | 2 1 ( f r 2 f 2 ) 2 + ( γ 2π ) 2 f 2

Metrics