J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]
[PubMed]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]
F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]
[PubMed]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref]
[PubMed]
S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref]
[PubMed]
V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56(16), 4750–4756 (2017).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref]
[PubMed]
H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref]
[PubMed]
Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]
H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56(16), 4750–4756 (2017).
[Crossref]
[PubMed]
H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref]
[PubMed]
H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref]
[PubMed]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]
A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]
Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]
A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]
V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24(11), 723–725 (1999).
[Crossref]
[PubMed]
V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]
S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref]
[PubMed]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]
[PubMed]
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]
[PubMed]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref]
[PubMed]
A. François, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]
[PubMed]
J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]
S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref]
[PubMed]
Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]
Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref]
[PubMed]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]
[PubMed]
T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]
T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
[Crossref]
[PubMed]
A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[Crossref]
[PubMed]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]
[PubMed]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref]
[PubMed]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
[Crossref]
[PubMed]
X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]
[PubMed]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]
S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref]
[PubMed]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]
[PubMed]
L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]
J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref]
[PubMed]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]
[PubMed]
A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref]
[PubMed]
L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]
A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]
S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref]
[PubMed]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]
Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]
T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]
J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]
Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]
H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref]
[PubMed]
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]
F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]
[PubMed]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]
[PubMed]
S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref]
[PubMed]
X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]
[PubMed]
J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref]
[PubMed]
H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
[Crossref]
[PubMed]
C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref]
[PubMed]
A. François, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]
[PubMed]
S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref]
[PubMed]
C. Zhao, Q. Yuan, L. Fang, X. Gan, and J. Zhao, “High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity,” Opt. Lett. 41(23), 5515–5518 (2016).
[Crossref]
[PubMed]
K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
[Crossref]
[PubMed]
A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[Crossref]
[PubMed]
Y. C. Lin, M. H. Mao, C. J. Wu, and H. H. Lin, “InAsSb/InAsPSb multiple quantum well disk cavities with pedestal structures on a GaSb substrate for mid-infrared whispering-gallery-mode emission beyond 4 μm,” Opt. Lett. 40(9), 1904–1907 (2015).
[Crossref]
[PubMed]
V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24(11), 723–725 (1999).
[Crossref]
[PubMed]
J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
[Crossref]
[PubMed]
V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]
L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref]
[PubMed]
X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]
[PubMed]
R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).