Abstract

We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10−4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers

Tobias Siegle, Jonas Kellerer, Marielle Bonenberger, Sarah Krämmer, Carolin Klusmann, Marius Müller, and Heinz Kalt
Opt. Express 26(3) 3579-3593 (2018)

Dome-shaped whispering gallery mode laser for remote wall temperature sensing

Tindaro Ioppolo and Maurizio Manzo
Appl. Opt. 53(22) 5065-5069 (2014)

Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance

Sarah Krämmer, Sanaz Rastjoo, Tobias Siegle, Sentayehu F. Wondimu, Carolin Klusmann, Christian Koos, and Heinz Kalt
Opt. Express 25(7) 7884-7894 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
    [Crossref] [PubMed]
  2. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
    [PubMed]
  3. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [Crossref] [PubMed]
  4. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
    [Crossref]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  6. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref] [PubMed]
  7. S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
    [Crossref] [PubMed]
  8. L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
    [Crossref]
  9. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
  10. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  11. X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
    [Crossref] [PubMed]
  12. Y. C. Lin, M. H. Mao, C. J. Wu, and H. H. Lin, “InAsSb/InAsPSb multiple quantum well disk cavities with pedestal structures on a GaSb substrate for mid-infrared whispering-gallery-mode emission beyond 4 μm,” Opt. Lett. 40(9), 1904–1907 (2015).
    [Crossref] [PubMed]
  13. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24(11), 723–725 (1999).
    [Crossref] [PubMed]
  14. J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
    [Crossref]
  15. Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
    [Crossref]
  16. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  17. T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
    [Crossref]
  18. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
    [Crossref]
  19. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]
  20. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
    [Crossref]
  21. C. Zhao, Q. Yuan, L. Fang, X. Gan, and J. Zhao, “High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity,” Opt. Lett. 41(23), 5515–5518 (2016).
    [Crossref] [PubMed]
  22. K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
    [Crossref] [PubMed]
  23. J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
    [Crossref]
  24. Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
    [Crossref]
  25. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
    [Crossref]
  26. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
    [Crossref] [PubMed]
  27. A. François, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
    [Crossref] [PubMed]
  28. S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
    [Crossref] [PubMed]
  29. H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
    [Crossref] [PubMed]
  30. X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
    [Crossref]
  31. X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
    [Crossref] [PubMed]
  32. L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
    [Crossref]
  33. H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
    [Crossref] [PubMed]
  34. J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
    [Crossref] [PubMed]
  35. H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56(16), 4750–4756 (2017).
    [Crossref] [PubMed]
  36. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
    [Crossref] [PubMed]
  37. H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
    [Crossref] [PubMed]
  38. C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
    [Crossref] [PubMed]
  39. J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

2018 (2)

2017 (4)

H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56(16), 4750–4756 (2017).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (4)

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref] [PubMed]

Y. C. Lin, M. H. Mao, C. J. Wu, and H. H. Lin, “InAsSb/InAsPSb multiple quantum well disk cavities with pedestal structures on a GaSb substrate for mid-infrared whispering-gallery-mode emission beyond 4 μm,” Opt. Lett. 40(9), 1904–1907 (2015).
[Crossref] [PubMed]

2014 (1)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

2013 (4)

K. Kosma, G. Zito, K. Schuster, and S. Pissadakis, “Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber,” Opt. Lett. 38(8), 1301–1303 (2013).
[Crossref] [PubMed]

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

2012 (3)

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref] [PubMed]

2010 (1)

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]

2009 (2)

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

2008 (2)

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2006 (3)

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[Crossref] [PubMed]

J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]

2000 (1)

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

1999 (1)

1997 (1)

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Abshire, J. B.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Allan, G. R.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Bailey, R. C.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Birks, T. A.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Browell, E. V.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Carmon, T.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Chakravarty, S.

Chandrahalim, H.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56(16), 4750–4756 (2017).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref] [PubMed]

Chang, R. K.

Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]

Chen, C.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Chen, Q.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Chen, Q. S.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Chen, R. T.

Cheung, G.

Cho, S.

Clements, W. R.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Dai, J.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Dantham, V. R.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Dugan, M.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Fan, X.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

H. Chandrahalim, S. C. Rand, and X. Fan, “Evanescent coupling between refillable ring resonators and laser-inscribed optical waveguides,” Appl. Opt. 56(16), 4750–4756 (2017).
[Crossref] [PubMed]

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Fan, X. D.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Fang, L.

Francois, A.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

François, A.

Gan, X.

Gardner, K.

Gong, Q.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Gong, Q. H.

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Gunn, L. C.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Guo, L. J.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Guo, Z.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Hasselbrack, W. E.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Haus, H. A.

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

He, L.

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Huang, L.

Huang, S. H.

Ilchenko, V. S.

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24(11), 723–725 (1999).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Jacques, F.

Jain, E.

Jiang, X.

Jiang, X. F.

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Kalt, H.

Kato, T.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Kimerling, L. C.

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Klusmann, C.

Knight, J. C.

Kolchenko, V.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Koos, C.

Kosma, K.

Krämmer, S.

Laine, J. P.

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Li, B. B.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Li, J.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Li, Y.

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Lim, D. R.

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

Lin, H. H.

Lin, Y.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Lin, Y. C.

Little, B. E.

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Liu, Z. P.

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Loncar, M.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Lu, J.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Maleki, L.

Manchee, C. P. K.

Mao, J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Mao, M. H.

McFarlane, S.

Mei, T.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Meissner, K. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Meldrum, A.

Monro, T. M.

Nishimura, N.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Oki, Y.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Pan, Y. L.

Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Pau, S.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Pissadakis, S.

Quan, H.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Ramanathan, A.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Rand, S. C.

Rastjoo, S.

Ren, J. L.

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Riesen, N.

Riris, H.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Said, A. A.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Schuster, K.

Shao, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Sheth, S.

Shi, Z.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Siegle, T.

Silverstone, J. W.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Suzuki, R.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Tanabe, T.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Tang, N.

Tapalian, H. C.

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

Tian, H.

Vahala, K. J.

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Vollmer, F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wan, L.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Wang, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Wang, W.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Wang, Y.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Washburn, A. L.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Weaver, C. J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Wiersig, J.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Wondimu, S. F.

Wu, C. J.

Xiao, Y. F.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Xu, C.

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Xu, X.

Yan, H.

Yang, H.

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Yang, J.

J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

Yang, L.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref] [PubMed]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]

Yao, X. S.

Yi, X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Yoshiki, W.

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

Yoshioka, H.

Yu, X. C.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Yuan, Q.

Zhang, H.

Zhang, S. J.

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

Zhang, S. X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Zhao, C.

Zhao, G.

Zhao, J.

Zhou, J.

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]

Zito, G.

Zou, C. L.

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Zustiak, S. P.

ACS Nano (1)

J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano 9(7), 6794–6800 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. H. Gong, “High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization,” Appl. Phys. Lett. 102(22), 221108 (2013).
[Crossref]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101(4), 043704 (2012).
[Crossref]

Y. L. Pan and R. K. Chang, “Highly efficient prism coupling to whispering gallery modes of a square μ-cavity,” Appl. Phys. Lett. 82(4), 487–489 (2003).
[Crossref]

T. Kato, W. Yoshiki, R. Suzuki, and T. Tanabe, “Polygonal silica toroidal microcavity for controlled optical coupling,” Appl. Phys. Lett. 101(12), 121101 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yang and L. J. Guo, “Optical sensors based on active-microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler,” IEEE Photonics Technol. Lett. 12(8), 1004–1006 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Lab Chip (1)

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Nat. Commun. (1)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4(3), 1994 (2013).
[PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (7)

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref] [PubMed]

X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref] [PubMed]

J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref] [PubMed]

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
[Crossref] [PubMed]

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “The effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

A. François, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref] [PubMed]

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7), 393–397 (1989).
[Crossref]

Phys. Rev. A (1)

L. He, S. K. Ozdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 11992–12003 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Remote Sens. (1)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).

Sci. Rep. (1)

H. Chandrahalim and X. Fan, “Reconfigurable solid-state dye-doped polymer ring resonator lasers,” Sci. Rep. 5(1), 18310 (2015).
[Crossref] [PubMed]

Science (1)

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Other (1)

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Top view and cross-sectional view along the AA’ plane of a dye-doped solid-state polymer micro-ring laser.
Fig. 2
Fig. 2 (a) SEM image of an etched fused-silica micro-ring resonator host with a channel profile. The width (W) and height (H) of this ring resonator host were 40 μm and 30 μm, respectively. The diameter (D) of the inner fused-silica microdisc was 220 μm. (b)-(d) Cross-sectional views corresponding to a dye-doped liquid-state polymer (b) dripped, (c) spin-coated, and (d) cured on the patterned wafer.
Fig. 3
Fig. 3 Illustration of the measurement setup for the dye-doped solid-state polymer micro-ring resonator laser-based refractive index sensor.
Fig. 4
Fig. 4 Comparison of the lasing spectral characteristics between (a) R6G-doped SU-8 polymer micro-ring laser and (b) R6G-doped TZ-001 polymer micro-ring laser in water.
Fig. 5
Fig. 5 Comparison of the lasing thresholds between (a) R6G-doped SU-8 polymer micro-ring laser and (b) R6G-doped TZ-001 polymer micro-ring laser in water.
Fig. 6
Fig. 6 Lasing spectra collected under different time intervals for the R6G-doped (a) SU-8 polymer micro-ring laser and (c) TZ-001 polymer micro-ring laser in water. Expansion of the lasing spectra at approximately 599.8 nm for (b) SU-8 and at approximately 588.8 nm for (d) TZ-001.
Fig. 7
Fig. 7 (a) Lasing spectra of the R6G-doped SU-8 polymer micro-ring laser in water and lemon juice. (b) The inset depicts the lasing peak shifts as a linear function of refractive index change.
Fig. 8
Fig. 8 (a) Lasing spectra of the R6G-doped TZ-001 polymer micro-ring laser in water and lemon juice. (b) The inset shows the lasing peak shifts as a linear function of refractive index change.

Metrics