Abstract

We demonstrate an unfolding displacement measurement method to overcome the aliasing problem of wavelength-comb-swept laser (WCSL). Compared to the conventional wavelength-swept laser (WSL), the WCSL exhibits an extended coherence length, owing to the narrowing spectral linewidth of the etalon filter. However, the aliasing interference signal induces an unexpected back-bounced phenomenon during displacement measurement because of the discretely distributed comb-like periodic spectra of the etalon filter. By using the dual-reference interferometry method, the back-bounced displacement measurement can be successfully unfolded to extend the measurement range by two times. In addition, we demonstrate a longer-range surface profiling image over 18 mm within the 200 mm of measurement range using a line-field beam of a parallel-swept source-optical coherence tomography system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb swept lasers

Tsung-Han Tsai, Chao Zhou, Desmond C. Adler, and James G. Fujimoto
Opt. Express 17(23) 21257-21270 (2009)

Optimization of a dispersion-tuned wavelength-swept fiber laser for optical coherence tomography

Yuya Takubo, Takuma Shirahata, and Shinji Yamashita
Appl. Opt. 55(27) 7749-7755 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334 (1994).
    [Crossref]
  2. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref]
  3. Y. S. Ghim and S. W. Kim, “Spectrally resolved white-light interferometry for 3D inspection of a thin-film layer structure,” Appl. Opt. 48(4), 799 (2009).
    [Crossref]
  4. E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally sampled OCT for sensitivity improvement from limited optical power,” Opt. Express 16(22), 17457–17467 (2008).
    [Crossref]
  5. K. Takada, “Fiber-optic frequency encoder for high-resolution OFDR,” IEEE Photonics Technol. Lett. 4(10), 1174–1177 (1992).
    [Crossref]
  6. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
    [Crossref]
  7. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref]
  8. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [Crossref]
  9. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [Crossref]
  10. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30(23), 3159–3161 (2005).
    [Crossref]
  11. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref]
  12. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 um wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref]
  13. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [Crossref]
  14. M. Y. Jeon, J. Zhang, and Z. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16(6), 3727–3737 (2008).
    [Crossref]
  15. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref]
  16. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref]
  17. J. Xu, W. Wei, S. Song, X. Qi, and R. K. Wang, “Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications,” Biomed. Opt. Express 7(5), 1905–1919 (2016).
    [Crossref]
  18. M. Siddiqui and B. J. Vakoc, “Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography,” Opt. Express 20(16), 17938–17951 (2012).
    [Crossref]
  19. T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
    [Crossref]
  20. B. Tomasz, W. Maciej, S. Maciej, S. Anna, H. Robert, and K. Andrzej, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref]
  21. N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
    [Crossref]
  22. J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
    [Crossref]
  23. H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).
  24. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41(25), 5256–5262 (2002).
    [Crossref]
  25. S.-W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C.-S. Kim, “Line-Field Swept-Source Interferometer for Simultaneous Measurement of Thickness and Refractive Index Distribution,” J. Lightwave Technol. 35(16), 3584–3590 (2017).
    [Crossref]

2017 (2)

N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
[Crossref]

S.-W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C.-S. Kim, “Line-Field Swept-Source Interferometer for Simultaneous Measurement of Thickness and Refractive Index Distribution,” J. Lightwave Technol. 35(16), 3584–3590 (2017).
[Crossref]

2016 (2)

J. Xu, W. Wei, S. Song, X. Qi, and R. K. Wang, “Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications,” Biomed. Opt. Express 7(5), 1905–1919 (2016).
[Crossref]

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

2014 (2)

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref]

2013 (1)

2012 (2)

2009 (2)

2008 (4)

2007 (1)

2005 (4)

2003 (2)

2002 (1)

1994 (1)

1992 (1)

K. Takada, “Fiber-optic frequency encoder for high-resolution OFDR,” IEEE Photonics Technol. Lett. 4(10), 1174–1177 (1992).
[Crossref]

Adler, D. C.

Akcay, C.

Akiba, M.

Andrzej, K.

Anna, S.

Biedermann, B. R.

Bouma, B.

Bouma, B. E.

Cable, A. E.

Chan, K. P.

Chen, Z.

Cho, S.-W.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]

Chong, C.

Chun, S. K.

N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
[Crossref]

de Boer, J.

de Boer, J. F.

de Groot, P.

Deck, L.

Draxinger, W.

Duker, J. S.

Eigenwillig, C. M.

Eom, T. J.

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally sampled OCT for sensitivity improvement from limited optical power,” Opt. Express 16(22), 17457–17467 (2008).
[Crossref]

Fujimoto, J. G.

Gee, S.

Ghim, Y. S.

Grulkowski, I.

Han, G.-H.

N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
[Crossref]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]

Huber, R.

Iftimia, N.

Itoh, M.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]

Jang, J.

Jayaraman, V.

Jeon, M. Y.

Jeong, M. Y.

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally sampled OCT for sensitivity improvement from limited optical power,” Opt. Express 16(22), 17457–17467 (2008).
[Crossref]

Jiang, J.

Jiang, J. Y.

Jin, J.

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

Jung, E. J.

Karpf, S.

Kim, C.-S.

S.-W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C.-S. Kim, “Line-Field Swept-Source Interferometer for Simultaneous Measurement of Thickness and Refractive Index Distribution,” J. Lightwave Technol. 35(16), 3584–3590 (2017).
[Crossref]

N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
[Crossref]

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally sampled OCT for sensitivity improvement from limited optical power,” Opt. Express 16(22), 17457–17467 (2008).
[Crossref]

Kim, D. Y.

Kim, G. H.

Kim, J. W.

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

Kim, J.-A.

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

Kim, M.

Kim, M. K.

Kim, S. W.

Klein, T.

Lee, B. H.

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

Lee, H. D.

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

Lee, J.

Liu, J. J.

Lu, C. D.

Maciej, S.

Maciej, W.

Madjarova, V. D.

Makita, S.

Moon, S.

Morosawa, A.

Oh, W. Y.

Palte, G.

Park, B.

Park, J.

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

Park, J.-S.

Park, N. S.

N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
[Crossref]

Parrein, P.

Pfeiffer, T.

Potsaid, B.

Qi, X.

Robert, H.

Rolland, J. P.

Sakai, T.

Shin, B. S.

Shin, J. G.

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

Siddiqui, M.

Song, S.

Takada, K.

K. Takada, “Fiber-optic frequency encoder for high-resolution OFDR,” IEEE Photonics Technol. Lett. 4(10), 1174–1177 (1992).
[Crossref]

Tearney, G.

Tearney, G. J.

Tomasz, B.

Tsai, T.-H.

Vakoc, B. J.

Wang, R. K.

Wei, W.

Wieser, W.

Wojtkowski, M.

Xu, J.

Yasuno, Y.

Yatagai, T.

Yu, B.-A.

Yun, S.

Yun, S. H.

Zhang, J.

Zhou, C.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

Biomed. Opt. Express (3)

IEEE J. Quantum Electron. (1)

H. D. Lee, M. Y. Jeong, C.-S. Kim, J. G. Shin, B. H. Lee, and T. J. Eom, “Linearly wavenumber-swept active mode locking short-cavity fiber laser for in-vivo OCT imaging,” IEEE J. Quantum Electron. 20(5), 1101008 (2014).

IEEE Photonics Technol. Lett. (1)

K. Takada, “Fiber-optic frequency encoder for high-resolution OFDR,” IEEE Photonics Technol. Lett. 4(10), 1174–1177 (1992).
[Crossref]

J. Biomed. Opt. (1)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (11)

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref]

S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref]

E. J. Jung, J.-S. Park, M. Y. Jeong, C.-S. Kim, T. J. Eom, B.-A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrally sampled OCT for sensitivity improvement from limited optical power,” Opt. Express 16(22), 17457–17467 (2008).
[Crossref]

M. Siddiqui and B. J. Vakoc, “Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography,” Opt. Express 20(16), 17938–17951 (2012).
[Crossref]

T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
[Crossref]

B. Tomasz, W. Maciej, S. Maciej, S. Anna, H. Robert, and K. Andrzej, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 um wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref]

M. Y. Jeon, J. Zhang, and Z. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16(6), 3727–3737 (2008).
[Crossref]

Opt. Lett. (2)

Sensors (Basel) (1)

N. S. Park, S. K. Chun, G.-H. Han, and C.-S. Kim, “Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements,” Sensors (Basel) 17(4), 740 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Experimental setup of the WCSL with the FFP-TF; SOA: semiconductor optical amplifier, PC: polarization controller, FFP-TF: fiber Fabry-Pérot tunable filter, and (b) Experimental setup of the measuring point spread function; PD: photodetector.
Fig. 2
Fig. 2 (a) Static output spectra of the WCSL, (b) Peak hold mode spectrum of the dynamic sweeping output, (c) Single output spectrum at 1550 nm, and (d) Time-trace of the sweeping output at a repetition rate of 300 Hz.
Fig. 3
Fig. 3 (a) Trace of FFT intensity of the conventional WSL, and (b) Trace of FFT intensity of the proposed WCSL for applied variable optical delay line positions of 0-250 mm.
Fig. 4
Fig. 4 Trace of the FFT intensity of the proposed WCSL for the measured FFT position.
Fig. 5
Fig. 5 (a) Modified experimental setup with dual reference arm, and (b) Detailed configuration for the placement of a sample and two reference mirrors.
Fig. 6
Fig. 6 (a,c) Expected results when D1 has an applied variable optical delay line position value within and outside the PMR, respectively, and (b,d) Measured PSFs when D1 has an applied variable optical delay line position value within and outside the PMR, respectively.
Fig. 7
Fig. 7 (a) Experimental setup for the SS-OCT system using line-field beam with WCSL and a dual reference arm, and (b) Photograph of the sample to have a displacement difference between top and bottom surfaces.
Fig. 8
Fig. 8 (a) The measurement result of the displacement difference along the line-field beam, and (b) 1D profile of axial displacement of a certain point A of top surface and a certain point B of bottom surface.

Metrics