Abstract

3 at.% Er:SrF2 laser crystals with high optical quality were successfully grown using the temperature gradient technique (TGT). The intense mid-infrared emission was observed around 2.7 μm with excitation by a 970 nm LD. Based on the Judd–Ofelt theory, the emission cross-sections of the 4I13/2-4I11/2 transition were calculated by using the Fuchtbauer–Ladenburg (FL) method. Efficient continuous-wave laser operation at 2.8 µm was achieved with the lightly-doped 3 at.% Er:SrF2 crystal pumped by a 970 nm laser diode. The laser output power reached up to 1.06 W with a maximum slope efficiency of 26%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals

Weiwei Ma, Liangbi Su, Xiaodong Xu, Jingya Wang, Dapeng Jiang, Lihe Zheng, Xiuwei Fan, Chun Li, Jie Liu, and Jun Xu
Opt. Mater. Express 6(2) 409-415 (2016)

Diode-pumped Er:SrF2 laser tunable at 2.7 μm

Richard Švejkar, Jan Šulc, Helena Jelínková, Václav Kubeček, Weiwei Ma, Dapeng Jiang, Qinghui Wu, and Liangbi Su
Opt. Mater. Express 8(4) 1025-1030 (2018)

Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region

Jingjing Liu, Jie Liu, Zhinan Guo, Han Zhang, Weiwei Ma, Jingya Wang, and Liangbi Su
Opt. Express 24(26) 30289-30295 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).
  2. T. Li, K. Beil, C. Kränkel, C. Brandt, and G. Huber, “Laser performance of highly doped Er:Lu2O3 at 2.8 µm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2012), paperAW5A.6.
  3. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [Crossref] [PubMed]
  4. J. Sulc, R. Svejkar, M. Nemec, H. Jelınkova, “Er:SrF2 crystal for diode-pumped 2.7 µm laser, ” in Advanced Solid State Lasers, OSA Technical Digest Series(Optical Society of America,2014), paper ATu2A.22.
  5. L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
    [Crossref]
  6. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref] [PubMed]
  7. M. Pollnan and S. D. Jackson, “Erbium 3 μm fiber lasers,” Selected Topics in Quantum Electronics IEEE Journal of 7(1), 30–40 (2001).
    [Crossref]
  8. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
    [Crossref] [PubMed]
  9. J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
    [Crossref] [PubMed]
  10. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [Crossref] [PubMed]
  11. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
    [Crossref] [PubMed]
  12. B. J. Dinerman and P. F. Moulton, “3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
    [Crossref] [PubMed]
  13. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
    [Crossref]
  14. T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Express 19(55), A1082–A1087 (2011).
    [Crossref] [PubMed]
  15. A. M. Tabirian, D. P. Stanley, and P. R. Selleck, “High Energy MWIR and New Eye safe SWIR Lasers,” Lasers and Electro-Optics Society (IEEE, 2007), pp. 507-508.
  16. W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
    [Crossref] [PubMed]
  17. J. Liu, J. Liu, J. Yang, W. Ma, Q. Wu, and L. Su, “Efficient mid-infrared laser under different excitation pump wavelengths,” Opt. Lett. 42(19), 3908–3911 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

2013 (1)

2012 (1)

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

2011 (1)

2004 (1)

2001 (3)

1999 (2)

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
[Crossref] [PubMed]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

1994 (1)

Arslanov, I. T. D. D.

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Chen, D. W.

Chen, J.

Cristescu, S. M.

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Dinerman, B. J.

Dou, R.

Dubinskii, M.

Ernst, H.

Ertmer, W.

Fan, X.

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Fields, R. A.

Fincher, C. L.

Fornasiero, L.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Guo, Z.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Harren, F. J. M.

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Huber, G.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Jackson, S. D.

M. Pollnan and S. D. Jackson, “Erbium 3 μm fiber lasers,” Selected Topics in Quantum Electronics IEEE Journal of 7(1), 30–40 (2001).
[Crossref]

Kanskar, M.

Kedlaya, D.

Kong, L.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Liu, J.

J. Liu, J. Liu, J. Yang, W. Ma, Q. Wu, and L. Su, “Efficient mid-infrared laser under different excitation pump wavelengths,” Opt. Lett. 42(19), 3908–3911 (2017).
[Crossref] [PubMed]

J. Liu, J. Liu, J. Yang, W. Ma, Q. Wu, and L. Su, “Efficient mid-infrared laser under different excitation pump wavelengths,” Opt. Lett. 42(19), 3908–3911 (2017).
[Crossref] [PubMed]

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Lubatschowski, H.

Luo, J.

Ma, W.

J. Liu, J. Liu, J. Yang, W. Ma, Q. Wu, and L. Su, “Efficient mid-infrared laser under different excitation pump wavelengths,” Opt. Lett. 42(19), 3908–3911 (2017).
[Crossref] [PubMed]

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Mandon, J.

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Mix, E.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Moulton, P. F.

Nyga, P.

Persijn, S. T.

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Petermann, K.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Peters, V.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Pollnan, M.

M. Pollnan and S. D. Jackson, “Erbium 3 μm fiber lasers,” Selected Topics in Quantum Electronics IEEE Journal of 7(1), 30–40 (2001).
[Crossref]

Qian, L.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

Qian, X.

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Qin, Z.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

Rose, T. S.

Sanamyan, T.

Skorczakowski, M.

Spunei, M.

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Su, L.

J. Liu, J. Liu, J. Yang, W. Ma, Q. Wu, and L. Su, “Efficient mid-infrared laser under different excitation pump wavelengths,” Opt. Lett. 42(19), 3908–3911 (2017).
[Crossref] [PubMed]

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Sun, D.

Swiderski, J.

Vernon, F. L.

Wang, J.

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Welling, H.

Wen, S.

Will, G. F.

Wu, Q.

Xiao, J.

Xiao, Y.

Xie, G.

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Xu, J.

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Yang, J.

Yin, S.

Yuan, P.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

Zajac, A.

Zhang, H.

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, and S. Yin, “Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er,Pr:GYSGG crystal,” Opt. Express 21(20), 23425–23432 (2013).
[Crossref] [PubMed]

Zhang, Q.

Zhao, C.

Ziolek, C.

Cryst. Res. Technol. (1)

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “New Oxide Crystals for Solid State Lasers,” Cryst. Res. Technol. 34(2), 255–260 (1999).
[Crossref]

Laser Photonics Rev. (1)

I. T. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for Technical sensitive molecular gas sensing,” Laser Photonics Rev. 10(2), 1–19 (2012).

Laser Phys. Lett. (1)

L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, and L. Qian, “Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength,” Laser Phys. Lett. 13(4), 045801 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Sci. Rep. (1)

W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref] [PubMed]

Selected Topics in Quantum Electronics IEEE Journal of (1)

M. Pollnan and S. D. Jackson, “Erbium 3 μm fiber lasers,” Selected Topics in Quantum Electronics IEEE Journal of 7(1), 30–40 (2001).
[Crossref]

Other (3)

J. Sulc, R. Svejkar, M. Nemec, H. Jelınkova, “Er:SrF2 crystal for diode-pumped 2.7 µm laser, ” in Advanced Solid State Lasers, OSA Technical Digest Series(Optical Society of America,2014), paper ATu2A.22.

T. Li, K. Beil, C. Kränkel, C. Brandt, and G. Huber, “Laser performance of highly doped Er:Lu2O3 at 2.8 µm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2012), paperAW5A.6.

A. M. Tabirian, D. P. Stanley, and P. R. Selleck, “High Energy MWIR and New Eye safe SWIR Lasers,” Lasers and Electro-Optics Society (IEEE, 2007), pp. 507-508.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Absorption spectra of the Er:SrF2 crystal at room temperature.
Fig. 2
Fig. 2 (a) 2.7 μm emission spectra of Er:SrF2 crystal at room temperature. (b) Fluorescence decay curve of Er:SrF2 for the 4I11/2 manifold.
Fig. 3
Fig. 3 The absorption and emission cross-sections spectra at around 2.7μm.
Fig. 4
Fig. 4 Gain cross-section spectra at 2.7 μm of 3 at.% Er:SrF2 crystal.
Fig. 5
Fig. 5 Experimental setup schematic of Er:SrF2 laser. ROC, radius of curvature; OC, output coupler.
Fig. 6
Fig. 6 Laser output powers of Er:SrF2 crystal at 2.8 μm versus absorbed pump powers at 970 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ em (λ)= A rad λ 5 I(λ) 8πc n 2 λI(λ)dλ
σ abs (λ)= σ em (λ) Z u Z L exp[ hc λ 1 E ZL K B T ]
σ G (λ)=P σ em (λ)(1P) σ abs (λ)

Metrics