Abstract

A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon three-dimensional imaging at up to 10 kilometers range

Agata M. Pawlikowska, Abderrahim Halimi, Robert A. Lamb, and Gerald S. Buller
Opt. Express 25(10) 11919-11931 (2017)

Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

Non-line-of-sight imaging using a time-gated single photon avalanche diode

Mauro Buttafava, Jessica Zeman, Alberto Tosi, Kevin Eliceiri, and Andreas Velten
Opt. Express 23(16) 20997-21011 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
    [Crossref]
  2. M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors 16, 745 (2016).
    [Crossref]
  3. E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A. 372, 20130100 (2014).
    [Crossref] [PubMed]
  4. E. Charbon and M. W. Fishburn, Single-Photon Imaging (Springer, 2011), Chap. 7.
  5. B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
    [Crossref]
  6. I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
    [Crossref]
  7. S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D.-U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
    [Crossref] [PubMed]
  8. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
    [Crossref]
  9. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
    [Crossref] [PubMed]
  10. N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40, 4305–4308 (2015).
    [Crossref]
  11. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
    [Crossref]
  12. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241 (2009).
    [Crossref] [PubMed]
  13. A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
    [Crossref]
  14. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
    [Crossref] [PubMed]
  15. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
    [Crossref] [PubMed]
  16. G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
    [Crossref]
  17. T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.
  18. E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
    [Crossref]
  19. N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
    [Crossref]
  20. F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
    [Crossref]
  21. S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-Iterative Image Reconstruction for Quanta Image Sensors,” Sensors 16, 1961 (2016).
    [Crossref]
  22. I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
    [Crossref] [PubMed]
  23. L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
    [Crossref] [PubMed]
  24. J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
    [Crossref] [PubMed]
  25. I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
    [Crossref]
  26. N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.
  27. A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
    [Crossref] [PubMed]
  28. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).
  29. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).
    [Crossref]
  30. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005).
    [Crossref]
  31. J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
    [Crossref]
  32. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
    [Crossref] [PubMed]
  33. R. Ammanouil, A. Ferrari, and C. Richard, “A graph Laplacian regularization for hyperspectral data unmixing,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 1637–1641.
  34. A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2001, pp. 849–856.
  35. S. Amari and S. Douglas, “Why natural gradient?” Proc. IEEE ICASSP-98,  2, 1213–1216 (1998).
  36. A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
    [Crossref]
  37. K. Cui, X. Li, and R. Zhu, “A high-resolution programmable Vernier delay generator based on carry chains in FPGA,” Rev. Sci. Instrum. 88, 064703 (2017).
    [Crossref] [PubMed]
  38. A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
    [Crossref]
  39. D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
    [Crossref] [PubMed]
  40. W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
    [Crossref]
  41. D. G. Bailey, Design for Embedded Image Processing on FPGAs (John Wiley & Sons, 2011), pp. 1–19.
  42. A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
    [Crossref]

2018 (1)

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

2017 (4)

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref] [PubMed]

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

K. Cui, X. Li, and R. Zhu, “A high-resolution programmable Vernier delay generator based on carry chains in FPGA,” Rev. Sci. Instrum. 88, 064703 (2017).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

2016 (11)

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-Iterative Image Reconstruction for Quanta Image Sensors,” Sensors 16, 1961 (2016).
[Crossref]

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
[Crossref]

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors 16, 745 (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

2015 (7)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40, 4305–4308 (2015).
[Crossref]

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D.-U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
[Crossref] [PubMed]

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
[Crossref]

2014 (5)

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A. 372, 20130100 (2014).
[Crossref] [PubMed]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[Crossref] [PubMed]

2012 (1)

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
[Crossref]

2010 (1)

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

2009 (1)

2007 (1)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref] [PubMed]

2005 (1)

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005).
[Crossref]

2004 (1)

1998 (1)

S. Amari and S. Douglas, “Why natural gradient?” Proc. IEEE ICASSP-98,  2, 1213–1216 (1998).

1992 (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).
[Crossref]

Agnew, M.

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

Al Abbas, T.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

Almer, O.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

Altmann, Y.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

Amari, S.

S. Amari and S. Douglas, “Why natural gradient?” Proc. IEEE ICASSP-98,  2, 1213–1216 (1998).

Ameer-Beg, S.

Ameer-Beg, S. M.

Ammanouil, R.

R. Ammanouil, A. Ferrari, and C. Richard, “A graph Laplacian regularization for hyperspectral data unmixing,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 1637–1641.

Antolovic, I. M.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Anzagira, L.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Aull, B.

B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
[Crossref]

Bailey, D. G.

D. G. Bailey, Design for Embedded Image Processing on FPGAs (John Wiley & Sons, 2011), pp. 1–19.

Barber, P.

Brockherde, W.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

Bruschini, C.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Buades, A.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005).
[Crossref]

Buller, G. S.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref] [PubMed]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241 (2009).
[Crossref] [PubMed]

Burri, S.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Busck, J.

Calder, N.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

Calder, N. J.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Chan, S. H.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-Iterative Image Reconstruction for Quanta Image Sensors,” Sensors 16, 1961 (2016).
[Crossref]

Charbon, E.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A. 372, 20130100 (2014).
[Crossref] [PubMed]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[Crossref] [PubMed]

E. Charbon and M. W. Fishburn, Single-Photon Imaging (Springer, 2011), Chap. 7.

Coelho, S.

Coll, B.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005).
[Crossref]

Collins, R. J.

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241 (2009).
[Crossref] [PubMed]

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Cui, K.

K. Cui, X. Li, and R. Zhu, “A high-resolution programmable Vernier delay generator based on carry chains in FPGA,” Rev. Sci. Instrum. 88, 064703 (2017).
[Crossref] [PubMed]

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref] [PubMed]

Dalgarno, P.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

Dalgarno, P. A.

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Davies, A.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

Deledalle, C.-A.

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
[Crossref]

Devauges, V.

Douglas, S.

S. Amari and S. Douglas, “Why natural gradient?” Proc. IEEE ICASSP-98,  2, 1213–1216 (1998).

Duncan, R.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

Duncan, R. R.

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

Durini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

Dutton, N.

Dutton, N. A. W.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Egiazarian, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref] [PubMed]

Elgendy, O. A.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-Iterative Image Reconstruction for Quanta Image Sensors,” Sensors 16, 1961 (2016).
[Crossref]

Erdogan, A.

Faccio, D.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Fatemi, E.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).
[Crossref]

Fernández, V.

Ferrari, A.

R. Ammanouil, A. Ferrari, and C. Richard, “A graph Laplacian regularization for hyperspectral data unmixing,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 1637–1641.

Fishburn, M. W.

E. Charbon and M. W. Fishburn, Single-Photon Imaging (Springer, 2011), Chap. 7.

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref] [PubMed]

Fossum, E. R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Gariepy, G.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Gnecchi, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Goyal, V. K.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

Grant, L. A.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Gyongy, I.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Halimi, A.

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref] [PubMed]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
[Crossref]

Harmany, Z.

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
[Crossref]

Heiselberg, H.

Henderson, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Henderson, R. K.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D.-U. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6, 277–296 (2015).
[Crossref] [PubMed]

N. Krstajić, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40, 4305–4308 (2015).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Henrion, Y.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

Heshmat, B.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Hoebe, R. A.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Hsu, F-H

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

Intermite, G.

Jordan, M.

A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2001, pp. 849–856.

Katkovnik, V.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref] [PubMed]

Krichel, N.

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

Krichel, N. J.

Krstajic, N.

Lamb, R. A.

Leach, J.

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Levitt, J.

Li, C.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Li, D. D.-U.

Li, X.

K. Cui, X. Li, and R. Zhu, “A high-resolution programmable Vernier delay generator based on carry chains in FPGA,” Rev. Sci. Instrum. 88, 064703 (2017).
[Crossref] [PubMed]

Lu, Y. M.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
[Crossref]

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Ma, J.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Maccarone, A.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

Mailhes, C.

A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
[Crossref]

Maruyama, Y.

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Masoodian, S.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

McCarthy, A.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241 (2009).
[Crossref] [PubMed]

McLaughlin, S.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

Mertens, L.

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

Moffat, J.

Monypenny, J.

Morel, J. M.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005).
[Crossref]

Ng, A.

A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2001, pp. 849–856.

Ng, T.

Osher, S.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).
[Crossref]

Padgett, M. J.

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

Pancheri, L.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors 16, 745 (2016).
[Crossref]

Parmesan, L.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Pavia, J. M.

Pawlikowska, A.

Pellegrini, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

Perenzoni, M.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors 16, 745 (2016).
[Crossref]

Petillot, Y.

Poland, S.

Poland, S. P.

Rae, B. R.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

Raskar, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Ren, X.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911 (2015).
[Crossref]

Richard, C.

R. Ammanouil, A. Ferrari, and C. Richard, “A graph Laplacian regularization for hyperspectral data unmixing,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 1637–1641.

Richardson, J.

Rickman, C.

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

Rudin, L. I.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).
[Crossref]

Salmon, J.

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
[Crossref]

Sbaiz, L.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
[Crossref]

Shapiro, J. H.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

Shin, D.

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Snoussi, H.

A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
[Crossref]

Sonnleitner, M.

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

Stoppa, D.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors 16, 745 (2016).
[Crossref]

Suhling, K.

Taghizadeh, M. R.

Thomson, R. R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Tosi, A.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

Tourneret, J.-Y.

A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
[Crossref]

Tyndall, D.

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Vetterli, M.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
[Crossref]

Villa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Waddie, A. J.

Walker, R.

Walker, R. J.

Wallace, A. M.

Wang, W.

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

Wang, X.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-Iterative Image Reconstruction for Quanta Image Sensors,” Sensors 16, 1961 (2016).
[Crossref]

Wang, Y.

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

Warburton, R. E.

Weiss, Y.

A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2001, pp. 849–856.

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

Willett, R.

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
[Crossref]

Wolf, M.

Wong, F. N.

Wong, F. N. C.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Xu, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

Xu, N.

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

Yan, J.

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

Yang, F.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
[Crossref]

Ye, J.

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

Zappa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

Zhu, R.

K. Cui, X. Li, and R. Zhu, “A high-resolution programmable Vernier delay generator based on carry chains in FPGA,” Rev. Sci. Instrum. 88, 064703 (2017).
[Crossref] [PubMed]

Zizza, R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

EURASIP J. Adv. Signal Process. (1)

A. M. Wallace, J. Ye, N. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller, “Full wave form analysis for long-range 3D imaging laser radar,” EURASIP J. Adv. Signal Process. 1, 896708 (2010).
[Crossref]

IEEE J. Sel. Top. quantum Electron. (1)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 frames/s 64×32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Top. quantum Electron. 20, 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCS for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 3804810(2014).
[Crossref]

IEEE Trans. Circuits Syst. Video Technol. (1)

W. Wang, J. Yan, N. Xu, Y. Wang, and F-H Hsu, “Real-time high-quality stereo vision system in FPGA,” IEEE Trans. Circuits Syst. Video Technol. 25, 1696–1708 (2015).
[Crossref]

IEEE Trans. Comp. Imaging (1)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data,” IEEE Trans. Comp. Imaging 2(4), 456–467 (2016).

IEEE Trans. Comput. Imaging (1)

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

IEEE Trans. Electron Devices (2)

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image sensor for single-photon counting and quanta imaging,” IEEE Trans. Electron Devices 63, 189–196 (2016).
[Crossref]

I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. Duncan, C. Rickman, P. Dalgarno, and R. K. Henderson, “A 256×256, 100kFPS, 61% Fill-factor SPAD Image Sensor for Time-resolved Microscopy Applications,” IEEE Trans. Electron Devices 65, 547–557 (2018).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

A. Halimi, C. Mailhes, J.-Y. Tourneret, and H. Snoussi, “Bayesian Estimation of Smooth Altimetric Parameters: Application to Conventional and Delay/Doppler Altimetry,” IEEE Trans. Geosci. Remote Sens. 54(4), 2207–2219 (2015).
[Crossref]

IEEE Trans. image Process. (1)

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled image acquisition using binary poisson statistics,” IEEE Trans. image Process. 21, 1421–1436 (2012).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007).
[Crossref] [PubMed]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref] [PubMed]

J. Math Imaging Vis. (1)

J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise reduction with non-local PCA,” J. Math Imaging Vis. 48, 279–294 (2014).
[Crossref]

Multiscale Model. Simul. (1)

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005).
[Crossref]

Nat. Commun. (2)

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6021 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phil. Trans. R. Soc. A. (1)

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A. 372, 20130100 (2014).
[Crossref] [PubMed]

Phys. D (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259–268 (1992).
[Crossref]

Proc. IEEE ICASSP-98 (1)

S. Amari and S. Douglas, “Why natural gradient?” Proc. IEEE ICASSP-98,  2, 1213–1216 (1998).

Rev. Sci. Instrum. (1)

K. Cui, X. Li, and R. Zhu, “A high-resolution programmable Vernier delay generator based on carry chains in FPGA,” Rev. Sci. Instrum. 88, 064703 (2017).
[Crossref] [PubMed]

Sci. Rep. (2)

I. Gyongy, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Smart-aggregation imaging for single molecule localisation with SPAD cameras,” Sci. Rep. 6, 37349 (2016).
[Crossref] [PubMed]

L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett, “Image reconstruction from photon sparse data,” Sci. Rep. 7, 42164 (2017).
[Crossref] [PubMed]

Sensors (5)

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-Iterative Image Reconstruction for Quanta Image Sensors,” Sensors 16, 1961 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: Every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors 16, 745 (2016).
[Crossref]

B. Aull, “Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits,” Sensors 16, 495 (2016).
[Crossref]

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and E. Charbon, “Photon-counting arrays for time-resolved imaging,” Sensors 16, 1005 (2016).
[Crossref]

Other (6)

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology,” in Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE, 2016), pp. 1–8.

E. Charbon and M. W. Fishburn, Single-Photon Imaging (Springer, 2011), Chap. 7.

N. A. W. Dutton, L. Parmesan, S. Gnecchi, I. Gyongy, N. J. Calder, B. R. Rae, L. A. Grant, and R. K. Henderson, “Oversampled ITOF Imaging Techniques using SPAD-based Quanta Image Sensors,” In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.

R. Ammanouil, A. Ferrari, and C. Richard, “A graph Laplacian regularization for hyperspectral data unmixing,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 1637–1641.

A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an Algorithm,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2001, pp. 849–856.

D. G. Bailey, Design for Embedded Image Processing on FPGAs (John Wiley & Sons, 2011), pp. 1–19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of the imaging system. The source was a pulsed laser diode (LD) with a peak wavelength of 685 nm. Two diffusers (D1 and D2) were placed at the laser output to provide uniform illumination of the target. A 75 mm focal length lens was used to illuminate the target scene located at a stand-off distance of ∼2 meters from the imager. A single lens reflex (50 mm focal length) camera lens was used as the system objective (Obj) to collect the scattered return photons from the target.
Fig. 2
Fig. 2 (a) Examples of individual binary frames (BFs) which are summed to create an image for a single delay step. (b) Examples of delay-step-wise 256 × 256 grayscale images formed from the summation of 2000 BFs. The approximate position of each example image is shown on the timing histogram. Note that the close-up photograph inset is a side view of the target scene.
Fig. 3
Fig. 3 Histograms of photon counts versus time delay steps for three example pixels from the same target region, illustrating the differences in detector response.
Fig. 4
Fig. 4 Timing histogram of photon returns for a single pixel. The counts from 100 delay steps from the plateau representing returns from the target are averaged to provide a value for target intensity in that pixel.
Fig. 5
Fig. 5 Images of the two targets used in this work. The first two photographs show the life-sized polystyrene head. The second two photographs show the display of assorted fruit comprised of a pineapple, orange, red pepper, apple and pear. The detector field of view is shown, for both targets, by the red dashed lines (approximately 190 mm × 190 mm). Both targets were placed in front of a flat uniform board to act as a back plane.
Fig. 6
Fig. 6 Depth (left) and intensity (right) maps of polystyrene head (top) and fruit arrangement (bottom) using cross-correlation and the median filter corrected cross-correlation. The intensity color maps belong to the intervals [0, Nf /3] and [0, Nf /4] for the head and fruit respectively, and Nf = 2000 in both cases.
Fig. 7
Fig. 7 Standard deviation of the mean depth (i.e. depth residual) as a function of number of binary frames using cross-correlation at various illumination power levels. The calculation of standard deviation was performed on a flat reference plane. The illumination power level is presented in terms of the average photon number per pixel per binary frame (PNBF) for all delay steps used.
Fig. 8
Fig. 8 Illustrative example of non-local classification used in the restorative clustering-based algorithm described in the text. Similar sized patches are used at each level, with subsequent levels containing progressively smaller patches.
Fig. 9
Fig. 9 Examples of photon return data from four pixels from different parts of the target (shown in blue) and their fitting by the analytical error function (in red) for Nf =1000 frames.
Fig. 10
Fig. 10 Depth maps of the polystyrene head for different numbers of binary frames obtained using: top - cross-correlation; middle - corrected cross-correlation; bottom - clustering-based restoration algorithm.
Fig. 11
Fig. 11 Intensity maps of the polystyrene head for different numbers of binary frames obtained using: top - cross-correlation; middle - corrected cross-correlation; bottom - clustering-based restoration algorithm. The intensity color maps belong to the interval [0, Nf /3].
Fig. 12
Fig. 12 Local orientation maps obtained with the clustering-based restoration algorithm for the polystyrene head target. Local orientation maps are shown for data sets containing: a) 2000; b) 50; c) 5; d) 2 binary frames. The colorbar values range from 50 to 120, which represent the values of the estimated parameter hn in Equation 3. The higher value represents a higher incident angle.
Fig. 13
Fig. 13 Signal-to-reconstruction error (SRE) for the polystyrene head target as a function of number of binary frames for both cross-correlation and the clustering-based algorithms. SRE is shown for a) depth profile and b) intensity. SRE for cross-correlation and the median filter corrected cross-correlation algorithms (which show identical SRE values) are represented by the dashed line, and the clustering-based restoration algorithm is represented by the solid line.

Tables (2)

Tables Icon

Table 1 Summary of the Main System Parameters

Tables Icon

Table 2 Total acquisition time over 1501 delay steps (taq) for different numbers of binary frames per step, average photon number per pixel over all binary frames (PNΣ) for all delay steps used and total exposure time (t) for cross-correlation (X-Corr.) and clustering-based restoration (Clust.) algorithms

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t = T 0 T 1 y n , t ( d ) T 1 T 0 + 1 > N f p d
y n , t g n , t = m = 1 T y n , m + t g n , m *
s n , t = r n 2 [ 1 + erf ( t d n h n ) ] + b n
𝒞 ( Θ ) = ( Θ ) + ϕ ( Θ )
SRE = 10 log 10 ( x 2 x x ^ 2 )

Metrics