Abstract

Most of hyperbolic metamaterials (HMMs) investigated to date are based on isotropic materials resulting in uniaxial HMMs in which dielectric permittivities perpendicular to the propagation direction are the same. Using an anisotropic material constituent to form a HMM is a promising research direction providing opportunities to control the dielectric permittivity in all three directions independently. Herein, we propose and theoretically demonstrate novel biaxial HMMs composed of multilayer stacks of few-layer black phosphorus (BP) and Au thin films. Black phosphorus is an anisotropic material exhibiting crystal axis-dependent dielectric permittivity due to its puckered crystal structure. The proposed HMM provides previously unattained hyperbolic dispersion relations in which the dielectric permittivity in Z-direction of the structure shows opposite sign from that in X- and Y-directions in the most wavelengths from 400~900nm. Furthermore, we calculated the Purcell factor of the proposed biaxial HMMs using full-field electromagnetic simulations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced and directional single-photon emission in hyperbolic metamaterials

Ward D. Newman, Cristian L. Cortes, and Zubin Jacob
J. Opt. Soc. Am. B 30(4) 766-775 (2013)

Dynamically tunable and active hyperbolic metamaterials

Joseph S. T. Smalley, Felipe Vallini, Xiang Zhang, and Yeshaiahu Fainman
Adv. Opt. Photon. 10(2) 354-408 (2018)

Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko
Opt. Express 22(15) 18290-18298 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  3. C. Caloz and T. Itoh, Electromagnetic Metamaterials (Wiley-IEEE Press, 2006).
  4. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  5. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  6. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
    [Crossref]
  7. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  8. T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
    [Crossref] [PubMed]
  9. J. S. Gomez-Diaz and A. Alu, “Flatland optics with hyperbolic metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
    [Crossref]
  10. S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
    [Crossref] [PubMed]
  11. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  12. K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
    [Crossref]
  13. D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
    [Crossref]
  14. M. Cuevas, “Surface plasmon enhancement of spontaneous emission in graphene waveguides,” J. Opt. 18(10), 105003 (2016).
    [Crossref]
  15. M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
    [Crossref] [PubMed]
  16. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
    [Crossref] [PubMed]
  17. J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6(1), 7201 (2015).
    [Crossref] [PubMed]
  18. K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
    [Crossref]
  19. M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
    [Crossref]
  20. C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
    [Crossref] [PubMed]
  21. K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
    [Crossref] [PubMed]
  22. S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
    [Crossref]
  23. M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
    [Crossref]
  24. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [Crossref] [PubMed]
  25. J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
    [Crossref] [PubMed]
  26. T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
    [Crossref] [PubMed]
  27. M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
    [Crossref] [PubMed]
  28. A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
    [Crossref]
  29. L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
    [Crossref]
  30. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
    [Crossref]
  31. K. E. Ballantine, J. F. Donegan, and P. R. Eastham, “Conical diffraction and the dispersion surface of hyperbolic metamaterials,” Phys. Rev. A 90(1), 013803 (2014).
    [Crossref]
  32. J. Sun, J. Zeng, and N. M. Litchinitser, “Twisting light with hyperbolic metamaterials,” Opt. Express 21(12), 14975–14981 (2013).
    [Crossref] [PubMed]
  33. W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
    [Crossref]
  34. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
    [Crossref]
  35. A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
    [Crossref] [PubMed]
  36. S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
    [Crossref] [PubMed]
  37. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref] [PubMed]
  38. S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
    [Crossref] [PubMed]
  39. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref] [PubMed]
  40. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
    [Crossref]
  41. A. Morita, “Semiconducting black phosphorus,” Appl. Phys., A Solids Surf. 39(4), 227–242 (1986).
    [Crossref]
  42. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [Crossref]

2017 (9)

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

2016 (9)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref] [PubMed]

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

M. Cuevas, “Surface plasmon enhancement of spontaneous emission in graphene waveguides,” J. Opt. 18(10), 105003 (2016).
[Crossref]

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

J. S. Gomez-Diaz and A. Alu, “Flatland optics with hyperbolic metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

2015 (7)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6(1), 7201 (2015).
[Crossref] [PubMed]

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

2014 (6)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

K. E. Ballantine, J. F. Donegan, and P. R. Eastham, “Conical diffraction and the dispersion surface of hyperbolic metamaterials,” Phys. Rev. A 90(1), 013803 (2014).
[Crossref]

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

2013 (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

J. Sun, J. Zeng, and N. M. Litchinitser, “Twisting light with hyperbolic metamaterials,” Opt. Express 21(12), 14975–14981 (2013).
[Crossref] [PubMed]

2012 (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

2011 (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2007 (1)

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

1986 (1)

A. Morita, “Semiconducting black phosphorus,” Appl. Phys., A Solids Surf. 39(4), 227–242 (1986).
[Crossref]

Akimov, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Alapan, Y.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

Alu, A.

J. S. Gomez-Diaz and A. Alu, “Flatland optics with hyperbolic metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Avouris, P.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Axelrod, S.

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Ballantine, K. E.

K. E. Ballantine, J. F. Donegan, and P. R. Eastham, “Conical diffraction and the dispersion surface of hyperbolic metamaterials,” Phys. Rev. A 90(1), 013803 (2014).
[Crossref]

Bao, F.

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Boltasseva, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Carvalho, A.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Castro Neto, A. H.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Chen, P. Y.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Chen, Y.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Chou, C. T.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Considine, C. R.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Cuevas, M.

M. Cuevas, “Surface plasmon enhancement of spontaneous emission in graphene waveguides,” J. Opt. 18(10), 105003 (2016).
[Crossref]

Cummer, S. A.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dezfouli, M. K.

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dickson, W.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Donegan, J. F.

K. E. Ballantine, J. F. Donegan, and P. R. Eastham, “Conical diffraction and the dispersion surface of hyperbolic metamaterials,” Phys. Rev. A 90(1), 013803 (2014).
[Crossref]

Eastham, P. R.

K. E. Ballantine, J. F. Donegan, and P. R. Eastham, “Conical diffraction and the dispersion surface of hyperbolic metamaterials,” Phys. Rev. A 90(1), 013803 (2014).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Fainman, Y.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Fang, F.

W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Farhat, M.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Ferrari, L.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Ferrera, M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Fullerton, E. E.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Galfsky, T.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Gao, J.

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

Gao, W.

W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Ginzburg, P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Gjerding, M. N.

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

Gomez-Diaz, J. S.

J. S. Gomez-Diaz and A. Alu, “Flatland optics with hyperbolic metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

Gu, J.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Guo, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

Hajizadegan, M.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Hanson, G.

A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref] [PubMed]

He, S.

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Helmy, A. S.

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

Hippalgaonkar, K.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Hughes, S.

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

Ilker, E. I.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

Iorsh, I.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Irudayaraj, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Jacob, Z.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Jiang, Y.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Jing, Y.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Kanté, B.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Kéna-Cohen, S.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Kildishev, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Kim, M.

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Klimov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Ko, C.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Ko, W. C.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Krasavin, A. V.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

Kruk, S. S.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Lagutchev, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Lee, S.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Lee, Y.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Lee, Y. H.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Li, G.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Li, J.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Li, L.

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

Litchinitser, N. M.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6(1), 7201 (2015).
[Crossref] [PubMed]

J. Sun, J. Zeng, and N. M. Litchinitser, “Twisting light with hyperbolic metamaterials,” Opt. Express 21(12), 14975–14981 (2013).
[Crossref] [PubMed]

Liu, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Liu, K.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, Y.

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Liu, Z.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Low, T.

A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Luk, T. S.

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Maier, S. A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Menon, V. M.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Montoya, S. A.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Morita, A.

A. Morita, “Semiconducting black phosphorus,” Appl. Phys., A Solids Surf. 39(4), 227–242 (1986).
[Crossref]

Mortensen, N. A.

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

Murphy, A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Narimanov, E. E.

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Nemilentsau, A.

A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref] [PubMed]

Neshev, D. N.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

O’Brien, K.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Park, J.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Pedersen, T. G.

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Petersen, R.

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poddubny, A. N.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Podolskiy, V. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pollard, R.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Powell, D. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

Pshenay-Severin, E.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Rashed, A. R.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

Rho, J.

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

Richards, D.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Riley, C. T.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Rodin, A. S.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Rodríguez-Fortuño, F. J.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Roth, D. J.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Sakhdari, M.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Segovia, P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

Shahin, S.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Shalaev, M. I.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6(1), 7201 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Shalaginov, M. Y.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Shalin, A. S.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

Shen, C.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Shi, K.

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

Smalley, J. S. T.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Smolyaninov, A. N.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

So, S.

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

Suh, J.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Sui, N.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Sun, J.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6(1), 7201 (2015).
[Crossref] [PubMed]

J. Sun, J. Zeng, and N. M. Litchinitser, “Twisting light with hyperbolic metamaterials,” Opt. Express 21(12), 14975–14981 (2013).
[Crossref] [PubMed]

Sun, Z.

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Sung Choe, H.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Suslu, A.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Thygesen, K. S.

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

Tong, L.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Tongay, S.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Urban, J. J.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Vallini, F.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Vorobyov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Voroshilov, P. M.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Wade, A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

Wang, H.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Wang, W.

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Wang, Y.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Wong, H. M. K.

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

Wong, Z. J.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Wu, J.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Wu, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Wurtz, G. A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Xia, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Xie, Y.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Yang, F.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Yang, S.

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

Yang, X.

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

Yao, K.

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

Yu, S.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Zayats, A. V.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Zeng, J.

Zhang, S.

W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Zhang, X.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

ACS Photonics (4)

J. S. Gomez-Diaz and A. Alu, “Flatland optics with hyperbolic metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4(10), 2513–2521 (2017).
[Crossref]

L. Li, W. Wang, T. S. Luk, X. Yang, and J. Gao, “Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures,” ACS Photonics 4(3), 501–508 (2017).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref] [PubMed]

Adv. Optoelectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Appl. Phys., A Solids Surf. (1)

A. Morita, “Semiconducting black phosphorus,” Appl. Phys., A Solids Surf. 39(4), 227–242 (1986).
[Crossref]

EPJ Appl. Metamat. (1)

K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. I. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, “Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity,” EPJ Appl. Metamat. 4, 1 (2017).
[Crossref]

J. Opt. (1)

M. Cuevas, “Surface plasmon enhancement of spontaneous emission in graphene waveguides,” J. Opt. 18(10), 105003 (2016).
[Crossref]

Laser Photonics Rev. (1)

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/ (Al, Sc) N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Light Sci. Appl. (1)

W. Gao, F. Fang, Y. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Nano Energy (1)

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Y. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Nano Lett. (2)

T. Galfsky, Z. Sun, C. R. Considine, C. T. Chou, W. C. Ko, Y. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Nat. Commun. (7)

S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. Sung Choe, A. Suslu, Y. Chen, C. Ko, J. Park, K. Liu, J. Li, K. Hippalgaonkar, J. J. Urban, S. Tongay, and J. Wu, “Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K,” Nat. Commun. 6(1), 8573 (2015).
[Crossref] [PubMed]

M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, and K. S. Thygesen, “Layered van der Waals crystals with hyperbolic light dispersion,” Nat. Commun. 8(1), 320 (2017).
[Crossref] [PubMed]

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6(1), 7201 (2015).
[Crossref] [PubMed]

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Nature (1)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

K. E. Ballantine, J. F. Donegan, and P. R. Eastham, “Conical diffraction and the dispersion surface of hyperbolic metamaterials,” Phys. Rev. A 90(1), 013803 (2014).
[Crossref]

Phys. Rev. B (4)

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195217 (2015).
[Crossref]

S. Axelrod, M. K. Dezfouli, H. M. K. Wong, A. S. Helmy, and S. Hughes, “Hyperbolic metamaterial nanoresonators make poor single-photon sources,” Phys. Rev. B 95(15), 155424 (2017).
[Crossref]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Phys. Rev. Lett. (3)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref] [PubMed]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Galfsky, J. Gu, E. E. Narimanov, and V. M. Menon, “Photonic hypercrystals for control of light-matter interactions,” Proc. Natl. Acad. Sci. U.S.A. 114(20), 5125–5129 (2017).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Sci. Rep. (2)

K. V. Sreekanth, M. ElKabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref] [PubMed]

M. Kim, S. So, K. Yao, Y. Liu, and J. Rho, “Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials,” Sci. Rep. 6(1), 38645 (2016).
[Crossref] [PubMed]

Science (2)

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (1)

C. Caloz and T. Itoh, Electromagnetic Metamaterials (Wiley-IEEE Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of layered few-layer BP-Au multilayer structure; Illustration the XZ plane vision of few-layer BP (b), which corresponding to the arm-chair property in X-axe and the YZ plane vision of few-layer BP (c), which corresponding to the zigzag property in Y-axe;
Fig. 2
Fig. 2 (a) The effective permittivity in the three directions of the orthogonal system for the alternative BP-Au multilayer structure, as solid lines and dash lines represent the real part and imaginary part of permittivity respectively. (b) The magnification the permittivity near the zero point. It should be noted here that the span of ε zz keeps from −250~250 for a better vision. Actually, the three curves would meet, not exactly, but almost at the same point (~623.3 nm) when magnifies that specific region.
Fig. 3
Fig. 3 (a) Dependence of ��xx and ��yy on thickness ratio p (p = dAu/dBP), while the black and blue lines correspond to the permittivity in X and Y-direction respective. (b) Dependence of ε zz on thickness ratio p from 0.8 to 1.4 over wavelength (400~900 nm). The solid and dash lines correspond to real and imaginary parts of the permittivity respectively. The permittivity map of real (c) and imaginary (d) part of ��zz with respect to thickness ratio p sweep.
Fig. 4
Fig. 4 (a) Purcell factor for 8-layer structure constructed by alternating few-layer BP (5nm) and Au (5nm) HMM, Fpx, Fpy, Fpz, corresponding to the Purcell factor activated by the electrical dipole at 10nm above HMM with orientation along X-, Y-, Z-direction respectively and Fpiso corresponding to isotropic Purcell factor for the whole multilayer structure. (b) Comparison of isotropic Purcell factor over frequency for the HMMs composed by 2, 3, 4 units’ structures along vertical direction. 1 unit composes by one-layer BP and one-layer Au. Thickness ratio p=1.2, d BP =5 nm is adopted in this model.
Fig. 5
Fig. 5 (a) Dependence of isotropic Purcell Factor ( F p iso ) over wavelength (400~900nm) for varying thickness ratio p ( p= d Au / d BP ) from 0.8 to 1.4 while the thickness of BP remains unchanged (5nm). (b) Dependence of isotropic Purcell Factor ( F p iso ) over wavelength (400~900nm) for varying BP thickness ( d BP ) from 3 nm to 6 nm while the thickness ratio remains unchanged ( p=1.2).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε=( ε xx 0 0 0 ε yy 0 0 0 ε zz )
ε xx = ε yy = ε zz 
ε xx = ε yy ε zz
ε xx ε yy ε zz
ε xx = ε Au d Au + ε BPx ε BPx d Au + d BP = ε Au d Au d BP + ε BPx d Au d BP +1 = ε Au p+ ε BPx p+1
ε yy = ε Au d Au + ε BPx ε BPy d Au + d BP = ε Au d Au d BP + ε BPy d Au d BP +1 = ε Au p+ ε BPy p+1
ε zz = d Au + d BPz d Au ε Au + d BP ε BPz = d Au d BP +1 d Au d BP 1 ε Au + 1 ε BPz = p+1 p ε Au + 1 ε BPz
F p iso = F p x +F p y +F p z 3

Metrics