Abstract

We report on the growth, spectroscopy, and laser operation of monocrystalline Tm3+:SrF2. Spectroscopic investigations confirmed the presence of broad absorption and emission bands caused by inequivalent doped sites, introduced by charge compensation effects which also caused the clusterization of doping ions in the lattice. We obtained continuous-wave laser emission at about 2 μm, with efficiencies comparable with other Tm-doped crystals. We also achieved an uninterrupted tuning range of 180 nm between 1.8 and 2 μm. This characterization indicates that SrF2 enhances the cooperative mechanisms between Tm ions, helping to obtain remarkable laser performances at low doping concentrations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped Er:SrF2 laser tunable at 2.7 μm

Richard Švejkar, Jan Šulc, Helena Jelínková, Václav Kubeček, Weiwei Ma, Dapeng Jiang, Qinghui Wu, and Liangbi Su
Opt. Mater. Express 8(4) 1025-1030 (2018)

Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts

Stephen A. Payne, John A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and William F. Krupke
J. Opt. Soc. Am. B 8(4) 726-740 (1991)

Broadly tunable laser operation near 2μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2

José M. Cano-Torres, María Dolores Serrano, Carlos Zaldo, Mauricio Rico, Xavier Mateos, Junhai Liu, Uwe Griebner, Valentin Petrov, Francisco José Valle, Miguel Galán, and Gregorio Viera
J. Opt. Soc. Am. B 23(12) 2494-2502 (2006)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.
  2. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm,” Appl. Opt. 35, 7117–7127 (1996).
    [Crossref] [PubMed]
  3. D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
    [Crossref]
  4. V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
    [Crossref]
  5. R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).
  6. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Progr. Quant. Electron. 33, 61–109 (2009).
    [Crossref]
  7. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and 80% slope efficiency,” Opt. Lett. 39, 4380–4383 (2014).
    [Crossref] [PubMed]
  8. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
    [Crossref] [PubMed]
  9. M. J. Cooper and K. D. Rouse, “A neutron diffraction study of SrF2 and CaF2,” Acta Cryst. A 27, 622–628 (1971).
    [Crossref]
  10. J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
    [Crossref] [PubMed]
  11. U. Ranon and A. Yaniv, “Charge compensation by interstitial F− ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9, 17–19 (1964).
    [Crossref]
  12. S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
    [Crossref]
  13. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
    [Crossref]
  14. T. P. J. Han, G. D. Jones, and R. W. G. Syme, “Site-selective spectroscopy of Nd3+ centers in CaF2:Nd3+ and SrF2:Nd3+,” Phys. Rev. B 47, 14706–14723 (1993).
    [Crossref]
  15. O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
    [Crossref]
  16. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
    [Crossref]
  17. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express 1, 489–502 (2011).
    [Crossref]
  18. T. T. Basiev, M. E. Doroshenko, V. A. Konyushkin, and V. V. Osiko, “SrF2:Nd3+ laser fluoride ceramics,” Opt. Lett. 35, 4009–4011 (2010).
    [Crossref] [PubMed]
  19. T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
    [Crossref]
  20. M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.
  21. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
    [Crossref]
  22. P. Dorenbos and H. W. den Hartog, “Space charges and dipoles in rare-earth-doped SrF2,” Phys. Rev. B 31, 3932–3938 (1985).
    [Crossref]
  23. S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
    [Crossref]
  24. D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
    [Crossref]
  25. B. P. Sobolev and K. B. Seiranian, “Phase diagrams of systems SrF2–(Y, Ln)F3. II. Fusibility of systems and thermal behavior of phases,” J. Solid State Chem. 39, 337–344 (1981).
    [Crossref]
  26. A. S. Jordan, “A theory of regular associated solutions applied to the liquidus curves of the Zn-Te and Cd-Te systems,” Met. Trans. 1, 239–249 (1970).
  27. P. Rudolph, “Defect formation during crystal growth from the melt,” in Springer Handbook of Crystal Growth, G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, eds. (Springer, Berlin, Heidelberg, 2010), pp. 159–201.
    [Crossref]
  28. J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
    [Crossref]
  29. D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
    [Crossref]
  30. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
    [Crossref]
  31. G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
    [Crossref]
  32. H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative Dispersion’,” Nature. 122, 438–439 (1928).
    [Crossref]
  33. S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
    [Crossref]
  34. F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron.. 44, 1076–1082 (2008).
    [Crossref]
  35. S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
    [Crossref]
  36. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
    [Crossref]
  37. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127, 750 (1962).
    [Crossref]
  38. G. S. Ofelt, “Intensities of Crystal Spectra of Rare–Earth Ions,” J. Chem. Phys. 37, 511 (1962).
    [Crossref]
  39. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [Crossref]
  40. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
    [Crossref]
  41. F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+ spectroscopy and diode-pumped laser experiments,” Appl. Phys. B 96, 363–368 (2009).
    [Crossref]
  42. R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
    [Crossref]
  43. L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
    [Crossref]
  44. G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Widely tunable 1.94-μm Tm:BaY2F8 laser,” Opt. Lett. 30, 854–856 (2005).
    [Crossref] [PubMed]
  45. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
    [Crossref] [PubMed]
  46. Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
    [Crossref]
  47. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
    [Crossref]
  48. X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
    [Crossref]
  49. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007).
    [Crossref] [PubMed]
  50. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
    [Crossref]

2017 (1)

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

2016 (2)

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33, D19–D27 (2016).
[Crossref]

2015 (1)

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

2014 (2)

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and 80% slope efficiency,” Opt. Lett. 39, 4380–4383 (2014).
[Crossref] [PubMed]

2012 (1)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (4)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Progr. Quant. Electron. 33, 61–109 (2009).
[Crossref]

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17, 11007–11012 (2009).
[Crossref] [PubMed]

D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
[Crossref]

F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+ spectroscopy and diode-pumped laser experiments,” Appl. Phys. B 96, 363–368 (2009).
[Crossref]

2008 (3)

S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
[Crossref]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron.. 44, 1076–1082 (2008).
[Crossref]

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (4)

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[Crossref]

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
[Crossref]

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

2005 (1)

2004 (2)

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[Crossref]

2003 (2)

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

2000 (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

1996 (1)

1994 (2)

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[Crossref]

1993 (1)

T. P. J. Han, G. D. Jones, and R. W. G. Syme, “Site-selective spectroscopy of Nd3+ centers in CaF2:Nd3+ and SrF2:Nd3+,” Phys. Rev. B 47, 14706–14723 (1993).
[Crossref]

1992 (1)

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

1991 (1)

1985 (1)

P. Dorenbos and H. W. den Hartog, “Space charges and dipoles in rare-earth-doped SrF2,” Phys. Rev. B 31, 3932–3938 (1985).
[Crossref]

1981 (1)

B. P. Sobolev and K. B. Seiranian, “Phase diagrams of systems SrF2–(Y, Ln)F3. II. Fusibility of systems and thermal behavior of phases,” J. Solid State Chem. 39, 337–344 (1981).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
[Crossref]

1975 (1)

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[Crossref]

1971 (1)

M. J. Cooper and K. D. Rouse, “A neutron diffraction study of SrF2 and CaF2,” Acta Cryst. A 27, 622–628 (1971).
[Crossref]

1970 (1)

A. S. Jordan, “A theory of regular associated solutions applied to the liquidus curves of the Zn-Te and Cd-Te systems,” Met. Trans. 1, 239–249 (1970).

1964 (1)

U. Ranon and A. Yaniv, “Charge compensation by interstitial F− ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9, 17–19 (1964).
[Crossref]

1962 (2)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

G. S. Ofelt, “Intensities of Crystal Spectra of Rare–Earth Ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

1953 (1)

J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
[Crossref]

1928 (1)

H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative Dispersion’,” Nature. 122, 438–439 (1928).
[Crossref]

Aguilo, M.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

Aguiló, M.

Alimov, O. K.

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Ames, L. L.

Aravazhi, S.

Balembois, F.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Basiev, T. T.

T. T. Basiev, M. E. Doroshenko, V. A. Konyushkin, and V. V. Osiko, “SrF2:Nd3+ laser fluoride ceramics,” Opt. Lett. 35, 4009–4011 (2010).
[Crossref] [PubMed]

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Benayad, A.

Bernd, H.-W.

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Bertram, R.

D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
[Crossref]

Bludau, W.

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[Crossref]

Borel, C.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Boudeile, J.

Boulon, G.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Braud, A.

S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[Crossref]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Brinkmann, R.

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Brockman, P.

Burton, J. A.

J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
[Crossref]

Cai, Z.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Caird, J. A.

Calloway, R. S.

Camy, P.

Cano-Torres, J. M.

Carvajal, J. J.

Cassanho, A.

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

Cerný, P.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Chang, R. S. F.

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[Crossref]

Chase, L.

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

Chase, L. L.

Cho, W. B.

Choi, S. Y.

Coluccelli, N.

Cooper, M. J.

M. J. Cooper and K. D. Rouse, “A neutron diffraction study of SrF2 and CaF2,” Acta Cryst. A 27, 622–628 (1971).
[Crossref]

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Progr. Quant. Electron. 33, 61–109 (2009).
[Crossref]

F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+ spectroscopy and diode-pumped laser experiments,” Appl. Phys. B 96, 363–368 (2009).
[Crossref]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron.. 44, 1076–1082 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007).
[Crossref] [PubMed]

G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Widely tunable 1.94-μm Tm:BaY2F8 laser,” Opt. Lett. 30, 854–856 (2005).
[Crossref] [PubMed]

Courjaud, A.

Damiano, E.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

Danicke, V.

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Danielmeyer, H. G.

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[Crossref]

den Hartog, H. W.

P. Dorenbos and H. W. den Hartog, “Space charges and dipoles in rare-earth-doped SrF2,” Phys. Rev. B 31, 3932–3938 (1985).
[Crossref]

Dergachev, A. Y.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Di Lieto, A.

F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+ spectroscopy and diode-pumped laser experiments,” Appl. Phys. B 96, 363–368 (2009).
[Crossref]

Diaz, F.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

Díaz, F.

Didierjean, J.

Djeu, N.

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[Crossref]

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

Dominiak-Dzik, G.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Dorenbos, P.

P. Dorenbos and H. W. den Hartog, “Space charges and dipoles in rare-earth-doped SrF2,” Phys. Rev. B 31, 3932–3938 (1985).
[Crossref]

Doroshenko, M. E.

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

T. T. Basiev, M. E. Doroshenko, V. A. Konyushkin, and V. V. Osiko, “SrF2:Nd3+ laser fluoride ceramics,” Opt. Lett. 35, 4009–4011 (2010).
[Crossref] [PubMed]

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Doualan, J. L.

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express 1, 489–502 (2011).
[Crossref]

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[Crossref] [PubMed]

S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[Crossref]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Druon, F.

Fedorov, P. P.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Fornari, R.

D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
[Crossref]

Forney, P.

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Fuhrberg, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
[Crossref] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.

Galán, M.

Galzerano, G.

García-Blanco, S. M.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Gavalda, J.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

Gemmi, M.

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

Georges, P.

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Griebner, U.

Grivas, C.

Guan, X.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Guell, F.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

Han, T. P. J.

T. P. J. Han, G. D. Jones, and R. W. G. Syme, “Site-selective spectroscopy of Nd3+ centers in CaF2:Nd3+ and SrF2:Nd3+,” Phys. Rev. B 47, 14706–14723 (1993).
[Crossref]

Hawley, J. G.

Higuchi, M.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Huber, G.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[Crossref]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
[Crossref] [PubMed]

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[Crossref]

Jelinkova, H.

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Jelínková, H.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Jenssen, H. P.

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

Jia, Z.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

Jiang, M.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
[Crossref]

Jones, G. D.

T. P. J. Han, G. D. Jones, and R. W. G. Syme, “Site-selective spectroscopy of Nd3+ centers in CaF2:Nd3+ and SrF2:Nd3+,” Phys. Rev. B 47, 14706–14723 (1993).
[Crossref]

Jordan, A. S.

A. S. Jordan, “A theory of regular associated solutions applied to the liquidus curves of the Zn-Te and Cd-Te systems,” Met. Trans. 1, 239–249 (1970).

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

Keller, R.

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Klein, S. H.

Klimm, D.

D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
[Crossref]

Kolb, E. D.

J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
[Crossref]

Konyushkin, V. A.

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

T. T. Basiev, M. E. Doroshenko, V. A. Konyushkin, and V. V. Osiko, “SrF2:Nd3+ laser fluoride ceramics,” Opt. Lett. 35, 4009–4011 (2010).
[Crossref] [PubMed]

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Koopmann, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
[Crossref] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[Crossref]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.

Kopfermann, H.

H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative Dispersion’,” Nature. 122, 438–439 (1928).
[Crossref]

Koselja, M.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Krühler, W. W.

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[Crossref]

Krupke, W. F.

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[Crossref]

Kuznetsov, S. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Kway, W. L.

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

Ladenburg, R.

H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative Dispersion’,” Nature. 122, 438–439 (1928).
[Crossref]

Lamrini, S.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
[Crossref] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.

Lan, J.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Laporta, P.

Lee, S.

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
[Crossref]

Lisiecki, R.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Liu, J.

J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006).
[Crossref]

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
[Crossref]

Loiko, P.

Madej, C.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Maier, D.

D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
[Crossref]

Manaa, H.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Martynova, K. A.

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Massons, J.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

Mateos, X.

Ménard, V.

Moncorge, R.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Moncorgé, R.

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express 1, 489–502 (2011).
[Crossref]

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping,” Opt. Express 16, 10098–10109 (2008).
[Crossref] [PubMed]

S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[Crossref]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Mottay, E.

Mu, W.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

Nakladov, N. A.

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Nielsen, N. D.

Ofelt, G. S.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare–Earth Ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

Orlovskii, Y. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Osiko, V. V.

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

T. T. Basiev, M. E. Doroshenko, V. A. Konyushkin, and V. V. Osiko, “SrF2:Nd3+ laser fluoride ceramics,” Opt. Lett. 35, 4009–4011 (2010).
[Crossref] [PubMed]

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Ott, V.

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Otto, R. G.

Papadopoulos, D. N.

Papashvili, A. G.

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

Parisi, D.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron.. 44, 1076–1082 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007).
[Crossref] [PubMed]

G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Widely tunable 1.94-μm Tm:BaY2F8 laser,” Opt. Lett. 30, 854–856 (2005).
[Crossref] [PubMed]

Payne, S.

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

Payne, S. A.

Pellegrina, A.

Petermann, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
[Crossref] [PubMed]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[Crossref]

Peters, R.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[Crossref]

Petrov, V.

Pollnau, M.

Polyachenkova, M. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Pujol, M. C.

Ranon, U.

U. Ranon and A. Yaniv, “Charge compensation by interstitial F− ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9, 17–19 (1964).
[Crossref]

Renard, S.

S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[Crossref]

Ricaud, S.

Rico, M.

Robinson, P. A.

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Rotermund, F.

Rouse, K. D.

M. J. Cooper and K. D. Rouse, “A neutron diffraction study of SrF2 and CaF2,” Acta Cryst. A 27, 622–628 (1971).
[Crossref]

Rudolph, P.

P. Rudolph, “Defect formation during crystal growth from the melt,” in Springer Handbook of Crystal Growth, G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, eds. (Springer, Berlin, Heidelberg, 2010), pp. 159–201.
[Crossref]

Ryba-Romanowski, W.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Schmidt, A.

Scholle, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36, 948–950 (2011).
[Crossref] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.

Seiranian, K. B.

B. P. Sobolev and K. B. Seiranian, “Phase diagrams of systems SrF2–(Y, Ln)F3. II. Fusibility of systems and thermal behavior of phases,” J. Solid State Chem. 39, 337–344 (1981).
[Crossref]

Serrano, M. D.

Serres, J. M.

Shaw, L. B.

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[Crossref]

Slichter, W. P.

J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
[Crossref]

Smith, L. K.

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[Crossref]

Sobczyk, M.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Sobolev, B. P.

B. P. Sobolev and K. B. Seiranian, “Phase diagrams of systems SrF2–(Y, Ln)F3. II. Fusibility of systems and thermal behavior of phases,” J. Solid State Chem. 39, 337–344 (1981).
[Crossref]

Solarz, P.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Sole, R. M.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

Souriau, J. C.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Steakley, B. C.

Steinmeyer, G.

Stone, R.

Struthers, J. D.

J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
[Crossref]

Sulc, J.

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

Šulc, J.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Swanson, D.

Syme, R. W. G.

T. P. J. Han, G. D. Jones, and R. W. G. Syme, “Site-selective spectroscopy of Nd3+ centers in CaF2:Nd3+ and SrF2:Nd3+,” Phys. Rev. B 47, 14706–14723 (1993).
[Crossref]

Tao, X.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

Targ, R.

Theisen, D.

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Tkachuk, A. M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Progr. Quant. Electron. 33, 61–109 (2009).
[Crossref]

G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Widely tunable 1.94-μm Tm:BaY2F8 laser,” Opt. Lett. 30, 854–856 (2005).
[Crossref] [PubMed]

Tonelli, M.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+ spectroscopy and diode-pumped laser experiments,” Appl. Phys. B 96, 363–368 (2009).
[Crossref]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Progr. Quant. Electron. 33, 61–109 (2009).
[Crossref]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron.. 44, 1076–1082 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007).
[Crossref] [PubMed]

G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Widely tunable 1.94-μm Tm:BaY2F8 laser,” Opt. Lett. 30, 854–856 (2005).
[Crossref] [PubMed]

Tu, C.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Urata, Y.

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

Valle, F. J.

van Dalfsen, K.

Veronesi, S.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Viera, G.

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Volpi, A.

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Wang, J.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
[Crossref]

Wang, Y.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Wyon, C.

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

Xu, B.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Xu, H.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Yaniv, A.

U. Ranon and A. Yaniv, “Charge compensation by interstitial F− ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9, 17–19 (1964).
[Crossref]

Yim, J. H.

Yin, Y.

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

Yumashev, K.

Zaldo, C.

Zarifis, V.

Zhang, H.

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
[Crossref]

Zhou, Z.

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Zia, R.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

Acta Cryst. A (1)

M. J. Cooper and K. D. Rouse, “A neutron diffraction study of SrF2 and CaF2,” Acta Cryst. A 27, 622–628 (1971).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

F. Cornacchia, A. Di Lieto, and M. Tonelli, “LiGdF4:Tm3+ spectroscopy and diode-pumped laser experiments,” Appl. Phys. B 96, 363–368 (2009).
[Crossref]

P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm,” Appl. Phys. B 102, 19–24 (2011).
[Crossref]

Appl. Phys. Lett. (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Cryst. Res. Technol. (1)

D. Maier, R. Bertram, D. Klimm, and R. Fornari, “Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method,” Cryst. Res. Technol. 44, 137–140 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004).
[Crossref]

IEEE J. Quantum Electron.. (2)

S. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.. 28, 2619–2630 (1992).
[Crossref]

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron.. 44, 1076–1082 (2008).
[Crossref]

J. Alloy. Compd. (1)

S. Renard, P. Camy, A. Braud, J. L. Doualan, and R. Moncorgé, “CaF2 doped with Tm3+: A cluster model,” J. Alloy. Compd. 451, 71–73 (2008).
[Crossref]

J. Appl. Phys. (2)

G. Huber, W. W. Krühler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of Crystal Spectra of Rare–Earth Ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

J. A. Burton, E. D. Kolb, W. P. Slichter, and J. D. Struthers, “Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental,” J. Chem. Phys. 21, 1991–1996 (1953).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
[Crossref]

J. Phys. D: Appl. Phys.. (2)

D. Parisi, S. Veronesi, A. Volpi, M. Gemmi, M. Tonelli, A. Cassanho, and H. P. Jenssen, “Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal,” J. Phys. D: Appl. Phys.. 47, 025101 (2014).
[Crossref]

S. Veronesi, Z. Jia, D. Parisi, E. Damiano, W. Mu, Y. Yin, M. Tonelli, and X. Tao, “Spectroscopy and diode pumped laser emission in (Lux Gd(1−x))3Ga5O12:Tm3+ single crystal,” J. Phys. D: Appl. Phys.. 48, 385302 (2015).
[Crossref]

J. Phys. IV France (1)

R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. C. Souriau, C. Borel, and C. Wyon, “Comparative optical study and 2 μm laser performance of the Tm3+ doped oxyde crystals: Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O,” J. Phys. IV France 04, 377–379 (1994).

J. Solid State Chem. (1)

B. P. Sobolev and K. B. Seiranian, “Phase diagrams of systems SrF2–(Y, Ln)F3. II. Fusibility of systems and thermal behavior of phases,” J. Solid State Chem. 39, 337–344 (1981).
[Crossref]

Met. Trans. (1)

A. S. Jordan, “A theory of regular associated solutions applied to the liquidus curves of the Zn-Te and Cd-Te systems,” Met. Trans. 1, 239–249 (1970).

Nature. (1)

H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative Dispersion’,” Nature. 122, 438–439 (1928).
[Crossref]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236, 395–402 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (1)

Y. Wang, J. Lan, Z. Zhou, X. Guan, B. Xu, H. Xu, Z. Cai, Y. Wang, and C. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. (1)

U. Ranon and A. Yaniv, “Charge compensation by interstitial F− ions in rare-earth-doped SrF2 and BaF2,” Phys. Lett. 9, 17–19 (1964).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

Phys. Rev. B (6)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

P. Dorenbos and H. W. den Hartog, “Space charges and dipoles in rare-earth-doped SrF2,” Phys. Rev. B 31, 3932–3938 (1985).
[Crossref]

T. P. J. Han, G. D. Jones, and R. W. G. Syme, “Site-selective spectroscopy of Nd3+ centers in CaF2:Nd3+ and SrF2:Nd3+,” Phys. Rev. B 47, 14706–14723 (1993).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Sobczyk, P. Černý, J. Šulc, H. Jelínková, Y. Urata, and M. Higuchi, “Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals,” Phys. Rev. B 74, 035103 (2006).
[Crossref]

L. B. Shaw, R. S. F. Chang, and N. Djeu, “Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[Crossref]

Phys. Stat. Sol. (1)

X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave and tunable laser operation of Tm:LuVO4 near 1.9 μm under Ti:sapphire and diode laser pumping,” Phys. Stat. Sol. 203, R19–R21 (2006).
[Crossref]

Proc. SPIE (1)

D. Theisen, V. Ott, H.-W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high-power IR laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Progr. Quant. Electron. (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Progr. Quant. Electron. 33, 61–109 (2009).
[Crossref]

Quantum Electron. (2)

O. K. Alimov, M. E. Doroshenko, V. A. Konyushkin, A. G. Papashvili, and V. V. Osiko, “Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions,” Quantum Electron. 46, 68 (2016).
[Crossref]

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36, 591 (2006).
[Crossref]

Other (3)

M. E. Doroshenko, V. A. Konyushkin, N. A. Nakladov, P. P. Fedorov, V. V. Osiko, K. A. Martynova, H. Jelinkova, and J. Sulc, “Spectroscopic and laser properties of Tm3+ ions in fluoride crystals and ceramics,” in 2014 International Conference Laser Optics (ICLO, 2014), p. 1.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010), pp. 471–500.

P. Rudolph, “Defect formation during crystal growth from the melt,” in Springer Handbook of Crystal Growth, G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, eds. (Springer, Berlin, Heidelberg, 2010), pp. 159–201.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Strontium-rich part of the SrF2–TmF3 phase diagram, with quadratic fits of liquidus and solidus lines up to 30 mol.% of TmF3. The experimental points were taken from [25]. Inset: calculated equilibrium distribution coefficient as a function of the concentration in the liquid. c0 is the initial concentration chosen for this crystal growth.
Fig. 2
Fig. 2 Ground-state absorption cross-section of monocrystalline Tm:SrF2 for the transitions that reach the 3H4 manifold (a) and the 3F4 manifold (b).
Fig. 3
Fig. 3 Emission cross-section of the 3F4 manifold in monocrystalline Tm:SrF2.
Fig. 4
Fig. 4 Laser gain cross-section for the 3F4 manifold in monocrystalline Tm:SrF2.
Fig. 5
Fig. 5 Layout of the resonator employed during the tunability experiments. All the labels are defined in text.
Fig. 6
Fig. 6 Output power as a function of the absorbed pump power in free-running mode, when the Tm:SrF2 crystal was pumped with the Ti:Sa laser (a) or with a diode laser (b). Slope efficiency (ηabs) and threshold absorbed power (Pthr) are also shown.
Fig. 7
Fig. 7 Tunability curve of Tm:SrF2 laser, measured at 0.9 W of absorbed pump power.

Tables (1)

Tables Icon

Table 1 Selected Results Reported for Laser Operation in Tm-Doped Single Crystals

Metrics