Abstract

Absorbance modulation enables lateral superresolution in optical lithography and transmission microscopy by generating a dynamic aperture within a photochromic absorbance-modulation layer (AML) coated on a substrate or a specimen. The applicability of this concept to reflection microscopy has not been addressed so far, although reflection imaging exhibits the important ability to image a wide range of samples, transparent or opaque, dielectric or metallic. In this paper, a simulation model for absorbance-modulation imaging (AMI) in confocal reflection microscopy is presented and it is shown that imaging well beyond the diffraction limit is feasible. In addition, we derive analytical design equations and estimate the dependence of the achievable resolution and pixel dwell time on relevant parameters, such as the AML properties and the applied light powers. We prove the validity of these equations through a comparison with the simulation results and we show that a resolution enhancement down to 1/5 of the diffraction limit is possible.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Superresolution optical nanopatterning at low light intensities using a quantum yield-matched photochrome

Apratim Majumder, Levi Bourke, Trisha L. Andrew, and Rajesh Menon
OSA Continuum 2(5) 1754-1761 (2019)

Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation

Farhana Masid, Trisha L. Andrew, and Rajesh Menon
Opt. Express 21(4) 5209-5214 (2013)

Barrier-free absorbance modulation for super-resolution optical lithography

Apratim Majumder, Farhana Masid, Benjamin Pollock, Trisha L. Andrew, and Rajesh Menon
Opt. Express 23(9) 12244-12250 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
    [Crossref] [PubMed]
  2. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  4. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  6. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
    [Crossref]
  7. S. W. Hell, S. Jakobs, and L. Kastrup, “Imaging and writing at the nanoscale with focused visible light through saturable optical transitions,” Appl. Phys. Adv. Mater. 77, 859–860 (2003).
  8. S. W. Hell, “Strategy for far-field optical imaging and writing without diffraction limit,” Phys. Lett. A 326(1-2), 140–145 (2004).
    [Crossref]
  9. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  10. A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy. A brief review,” Int. J. Nanotechnol. 9(3/4/5/6/7), 488 (2012).
    [Crossref]
  11. T. Tsujioka and M. Irie, “Spot Shape on Super-Resolution Optical Disks with a Photon-Mode Mask Layer,” Opt. Rev. 5(3), 158–162 (1998).
    [Crossref]
  12. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
    [Crossref] [PubMed]
  13. Z. Wei, J. Bai, J. Xu, C. Wang, Y. Yao, N. Hu, Y. Liang, K. Wang, and G. Yang, “Focused laser lithographic system with sub-wavelength resolution based on vortex laser induced opacity of photochromic material,” Opt. Lett. 39(23), 6707–6710 (2014).
    [Crossref] [PubMed]
  14. A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
    [Crossref]
  15. R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007).
    [Crossref] [PubMed]
  16. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23(9), 2290–2294 (2006).
    [Crossref] [PubMed]
  17. R. Menon and H. I. Smith, “Nanoscale imaging via absorption modulation,” US 8143601 B2 (6 August 2008).
  18. H.-Y. Tsai, E. E. Moon, and R. Menon, “Far-Field Optical Imaging at the Nanoscale via Absorbance Modulation,” in Advances in Imaging. Novel Techniques in Microscopy, OSA Technical Digest (2009), pp. NMA2.
  19. H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning-optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014–16024 (2010).
    [Crossref] [PubMed]
  20. M. Warner and R. J. Blaikie, “Two-color nonlinear absorption of light in dye layers,” Phys. Rev. A 80(3), 033833 (2009).
    [Crossref]
  21. H.-Y. S. Tsai, Overcoming the Far-Field Diffraction Limit via Absorbance Modulation. PhD dissertation (Massachusetts Institute of Technology, 2011).
  22. G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
    [Crossref] [PubMed]
  23. G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
    [Crossref] [PubMed]
  24. J. Foulkes, Absorbance Modulation Optical Lithography: Simulating the Performance of an Adaptable Absorbance Mask in the Near-Field. PhD dissertation (University of Canterbury, 2010).
  25. J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28(11), 2218–2225 (2011).
    [Crossref] [PubMed]
  26. S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
    [Crossref] [PubMed]
  27. B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
    [Crossref] [PubMed]
  28. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [Crossref]
  29. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46(10), 1819–1829 (2007).
    [Crossref] [PubMed]
  30. P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
    [Crossref] [PubMed]
  31. T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Mircosc.-Oxford 244, 113–121 (2011).
    [Crossref]
  32. H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier, 2003).
  33. A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
    [Crossref]
  34. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  35. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2016).
  36. C. Rembe and A. Dräbenstedt, “Laser-scanning confocal vibrometer microscope. Theory and experiments,” Rev. Sci. Instrum. 77(8), 83702 (2006).
    [Crossref]
  37. T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
    [Crossref]
  38. R. Kowarsch and C. Rembe, “Modellierung der Auflösungssteigerung mittels photochromer Schichten für die nanoskopische Laser-Doppler-Vibrometrie,” in XXX. Messtechnisches Symposium (De Gruyter, 2016), pp. 85–95.
    [Crossref]

2016 (2)

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

2014 (1)

2013 (2)

G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
[Crossref] [PubMed]

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

2012 (1)

A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy. A brief review,” Int. J. Nanotechnol. 9(3/4/5/6/7), 488 (2012).
[Crossref]

2011 (2)

J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28(11), 2218–2225 (2011).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

M. Warner and R. J. Blaikie, “Two-color nonlinear absorption of light in dye layers,” Phys. Rev. A 80(3), 033833 (2009).
[Crossref]

2007 (3)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007).
[Crossref] [PubMed]

B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46(10), 1819–1829 (2007).
[Crossref] [PubMed]

2006 (5)

R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23(9), 2290–2294 (2006).
[Crossref] [PubMed]

C. Rembe and A. Dräbenstedt, “Laser-scanning confocal vibrometer microscope. Theory and experiments,” Rev. Sci. Instrum. 77(8), 83702 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

2004 (3)

S. W. Hell, “Strategy for far-field optical imaging and writing without diffraction limit,” Phys. Lett. A 326(1-2), 140–145 (2004).
[Crossref]

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
[Crossref] [PubMed]

2003 (1)

S. W. Hell, S. Jakobs, and L. Kastrup, “Imaging and writing at the nanoscale with focused visible light through saturable optical transitions,” Appl. Phys. Adv. Mater. 77, 859–860 (2003).

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

1998 (1)

T. Tsujioka and M. Irie, “Spot Shape on Super-Resolution Optical Disks with a Photon-Mode Mask Layer,” Opt. Rev. 5(3), 158–162 (1998).
[Crossref]

1997 (1)

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

1996 (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

1994 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Andrew, T. L.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Bai, J.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Bertarelli, C.

G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bianco, A.

G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

Blaikie, R. J.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Castagna, R.

G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

Chen, F.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Chiu, D. T.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Dräbenstedt, A.

C. Rembe and A. Dräbenstedt, “Laser-scanning confocal vibrometer microscope. Theory and experiments,” Rev. Sci. Instrum. 77(8), 83702 (2006).
[Crossref]

Dumas, P.

A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy. A brief review,” Int. J. Nanotechnol. 9(3/4/5/6/7), 488 (2012).
[Crossref]

Dyba, M.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Foulkes, J. E.

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

S. W. Hell, “Strategy for far-field optical imaging and writing without diffraction limit,” Phys. Lett. A 326(1-2), 140–145 (2004).
[Crossref]

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

S. W. Hell, S. Jakobs, and L. Kastrup, “Imaging and writing at the nanoscale with focused visible light through saturable optical transitions,” Appl. Phys. Adv. Mater. 77, 859–860 (2003).

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Helms, P. L.

A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Horikawa, Y.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

Hu, N.

Irie, M.

T. Tsujioka and M. Irie, “Spot Shape on Super-Resolution Optical Disks with a Photon-Mode Mask Layer,” Opt. Rev. 5(3), 158–162 (1998).
[Crossref]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

Ishikawa, A.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

Jakobs, S.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

S. W. Hell, S. Jakobs, and L. Kastrup, “Imaging and writing at the nanoscale with focused visible light through saturable optical transitions,” Appl. Phys. Adv. Mater. 77, 859–860 (2003).

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Kastrup, L.

S. W. Hell, S. Jakobs, and L. Kastrup, “Imaging and writing at the nanoscale with focused visible light through saturable optical transitions,” Appl. Phys. Adv. Mater. 77, 859–860 (2003).

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Kume, M.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

Lereu, A. L.

A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy. A brief review,” Int. J. Nanotechnol. 9(3/4/5/6/7), 488 (2012).
[Crossref]

Liang, Y.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Majumder, A.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

Masid, F.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Menon, R.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
[Crossref] [PubMed]

H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning-optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014–16024 (2010).
[Crossref] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007).
[Crossref] [PubMed]

R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23(9), 2290–2294 (2006).
[Crossref] [PubMed]

Munro, P.

Neupane, B.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Olivo-Marin, J.-C.

Pariani, G.

G. Pariani, R. Castagna, R. Menon, C. Bertarelli, and A. Bianco, “Modeling absorbance-modulation optical lithography in photochromic films,” Opt. Lett. 38(16), 3024–3027 (2013).
[Crossref] [PubMed]

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

Passian, A.

A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy. A brief review,” Int. J. Nanotechnol. 9(3/4/5/6/7), 488 (2012).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pollock, B. J.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

Rembe, C.

C. Rembe and A. Dräbenstedt, “Laser-scanning confocal vibrometer microscope. Theory and experiments,” Rev. Sci. Instrum. 77(8), 83702 (2006).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Smith, H. I.

Soppera, O.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Sun, W.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Thomas, S. W.

H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning-optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014–16024 (2010).
[Crossref] [PubMed]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007).
[Crossref] [PubMed]

Török, P.

Tsai, H.-Y.

H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning-optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014–16024 (2010).
[Crossref] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007).
[Crossref] [PubMed]

Tsujioka, T.

T. Tsujioka and M. Irie, “Spot Shape on Super-Resolution Optical Disks with a Photon-Mode Mask Layer,” Opt. Rev. 5(3), 158–162 (1998).
[Crossref]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

Wan, X.

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

Wang, C.

Wang, G.

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Wang, K.

Warner, M.

M. Warner and R. J. Blaikie, “Two-color nonlinear absorption of light in dye layers,” Phys. Rev. A 80(3), 033833 (2009).
[Crossref]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Wei, Z.

Wichmann, J.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Xu, J.

Yang, G.

Yao, Y.

Zerubia, J.

Zhang, B.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

AIP Adv. (2)

A. Majumder, X. Wan, F. Masid, B. J. Pollock, T. L. Andrew, O. Soppera, and R. Menon, “Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels,” AIP Adv. 6(6), 065312 (2016).
[Crossref]

A. Majumder, P. L. Helms, T. L. Andrew, and R. Menon, “A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography,” AIP Adv. 6(3), 035210 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Adv. Mater. (1)

S. W. Hell, S. Jakobs, and L. Kastrup, “Imaging and writing at the nanoscale with focused visible light through saturable optical transitions,” Appl. Phys. Adv. Mater. 77, 859–860 (2003).

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9(1), 413–418 (1873).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol. 14(5), 599–609 (2004).
[Crossref] [PubMed]

Int. J. Nanotechnol. (1)

A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy. A brief review,” Int. J. Nanotechnol. 9(3/4/5/6/7), 488 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. A (1)

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, “Kinetics of photochromic conversion at the solid state: quantum yield of dithienylethene-based films,” J. Phys. Chem. A 115(44), 12184–12193 (2011).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-Resolution Disk with a Photochromic Mask Layer,” Jpn. J. Appl. Phys. 36(1), 526–529 (1997).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Rev. (1)

T. Tsujioka and M. Irie, “Spot Shape on Super-Resolution Optical Disks with a Photon-Mode Mask Layer,” Opt. Rev. 5(3), 158–162 (1998).
[Crossref]

Phys. Lett. A (1)

S. W. Hell, “Strategy for far-field optical imaging and writing without diffraction limit,” Phys. Lett. A 326(1-2), 140–145 (2004).
[Crossref]

Phys. Rev. A (1)

M. Warner and R. J. Blaikie, “Two-color nonlinear absorption of light in dye layers,” Phys. Rev. A 80(3), 033833 (2009).
[Crossref]

Phys. Rev. Lett. (1)

R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Rev. Sci. Instrum. (2)

C. Rembe and A. Dräbenstedt, “Laser-scanning confocal vibrometer microscope. Theory and experiments,” Rev. Sci. Instrum. 77(8), 83702 (2006).
[Crossref]

B. Neupane, F. Chen, W. Sun, D. T. Chiu, and G. Wang, “Tuning donut profile for spatial resolution in stimulated emission depletion microscopy,” Rev. Sci. Instrum. 84(4), 043701 (2013).
[Crossref] [PubMed]

Science (3)

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (8)

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2016).

H.-Y. S. Tsai, Overcoming the Far-Field Diffraction Limit via Absorbance Modulation. PhD dissertation (Massachusetts Institute of Technology, 2011).

J. Foulkes, Absorbance Modulation Optical Lithography: Simulating the Performance of an Adaptable Absorbance Mask in the Near-Field. PhD dissertation (University of Canterbury, 2010).

R. Kowarsch and C. Rembe, “Modellierung der Auflösungssteigerung mittels photochromer Schichten für die nanoskopische Laser-Doppler-Vibrometrie,” in XXX. Messtechnisches Symposium (De Gruyter, 2016), pp. 85–95.
[Crossref]

R. Menon and H. I. Smith, “Nanoscale imaging via absorption modulation,” US 8143601 B2 (6 August 2008).

H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier, 2003).

H.-Y. Tsai, E. E. Moon, and R. Menon, “Far-Field Optical Imaging at the Nanoscale via Absorbance Modulation,” in Advances in Imaging. Novel Techniques in Microscopy, OSA Technical Digest (2009), pp. NMA2.

T. Wilson, “Resolution and optical sectioning in the confocal microscope,” J. Mircosc.-Oxford 244, 113–121 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme for the generation of a dynamic subwavelength aperture in an absorbance-modulation layer by the far-field radiation of a confining beam (creating an annular spot on the AML, in blue) and a diffraction-limited measurement beam (in red). Therefore, the optically saturable absorbance at the measurement wavelength λ2 of a unimolecular photochrome between a state A (transparent for λ2) and state B (opaque for λ2) is exploited. The intended radiative transition from state A to B is induced by absorption of a photon at the confining wavelength λ1 and for the transition from state B to A at measurement wavelength λ2. The wavelengths strongly depend on the photochemical properties of the utilized photochrome and are typically in the near-UV to visible wavelength range [12,19].
Fig. 2
Fig. 2 Transmission contrast CTλ2 at the measurement wavelength over the γ-value for different AML thicknesses. For a 100 nm thick AML, the target transmission contrast CTλ2,target = 1000 is achieved for γ-values of γ ≥ 7.3.
Fig. 3
Fig. 3 Simulated lateral resolution factor κ as a function of the power ratio PR of the incorporated beams for BTE (NA2 = 0.6, W1 = W2, and confocal detection). The resolution enhancement is depicted for different AML thicknesses D (at constant γ = 2.99) (a) and varying γ-values (at constant AML thickness of D = 100 nm) (b). The (dashed) line depicts the derived estimation (Eqs. (19) and (20) with P R sat =Γ4.6× 10 3 and Γ ≈ 1.2).
Fig. 4
Fig. 4 Simulated signal to background ratio SBR (a,b) and AML transmittance TAML (c,d) over the resolution factor κ for BTE (NA2 = 0.6, W1 = W2, and confocal detection). The SBR-value and the AML transmittance are shown for different AML thicknesses D (at constant γ = 2.99) (a,c) and varying γ-values (at constant AML thickness of D = 100 nm) (b,d). The theoretical transmittance in (c,d) is estimated by a simple circular-aperture model (dashed reference curve) with a diameter corresponding to the resolution factor κ.

Tables (3)

Tables Icon

Table 1 Equations and approximations for the photon flux densities of the PSFs.

Tables Icon

Table 2 Photochromic parameters for BTE.

Tables Icon

Table 3 Photochromic parameters for BTE (continued) .

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

d dt c A ( r,z,t )= φ λ1 ( r,z,t )[ σ AB λ1 c A ( r,z,t ) σ BA λ1 c B ( r,z,t ) ] + φ λ2 ( r,z,t )[ σ BA λ2 c B ( r,z,t ) σ AB λ2 c A ( r,z,t ) ]+ k B c B ( r,z,t )
φ λ2 ( r,z,t )= φ λ2 ( r,z,t )+ φ λ2 ( r,z,t ) = φ λ2,in (r)exp[ 0 z dζ A λ2 ( r,ζ,t ) ] . + φ λ2,in (r) R λ2 exp[ 0 D dζ A λ2 ( r,ζ,t ) z D dζ A λ2 ( r,ζ,t ) ]
A λ2 ( r,ζ,t )= ε B λ2 c B ( r,ζ,t )+ ε A λ2 c A ( r,ζ,t )
E λ2,out ( r,ϕ,z=2D )= 0 r d r E λ2,in ( r ,z=0 ) [ 0 2π d ϕ exp( jk| s | ) | s | cos( θ )exp( 1 2 s ds A stat,λ2 ) ]
R stat,λ2 AML ( r,z=0 )= | n amb n AML +j λ 2 4π A stat,λ2 ( r,z=0 ) n amb + n AML j λ 2 4π A stat,λ2 ( r,z=0 ) | 2
C T λ = T transparent ( λ ) T opaque ( λ )
ln( C T λ2 )=2D( ε B λ2 ε A λ2 ) c total .
ε 2 c total,2 =γ ε 1 c total,1
t stat >5 [ ( 1+ R λ1 ) φ λ1,in ( σ AB λ1 + σ BA λ1 )+( 1+ R λ2 ) φ λ2,in ( σ BA λ2 + σ AB λ2 ) ] 1
Δ x AMI 2 r AML .
c B,stat ( r AML )= c B ( r AML ,t t stat )= β HM c total and
c A,stat ( r AML )= c A ( r AML ,t t stat )=( 1 β HM ) c total
φ λ1,stat ( r AML )[ σ AB λ1 ( 1 β HM ) c total σ BA λ1 β HM c total ] = φ λ2,stat ( r AML )[ σ BA λ2 β HM c total σ AB λ2 ( 1 β HM ) c total ]
φ λ2,stat ( r AML ) φ λ1,stat ( r AML ) = 1 β HM β HM σ AB λ1 σ BA λ2 .
α φ λ2,in ( r AML ) φ λ1,in ( r AML ) φ λ2,stat ( r AML ) φ λ1,stat ( r AML ) = 1 β HM β HM σ AB λ1 σ BA λ2 .
φ λ2,in ( r AML ) φ λ1,in ( r AML ) λ 2 λ 1 2 π P 2 W 2 2 [ 12 ( r AML W 2 ) 2 ] 4 π P 1 W 1 2 ( r AML W 1 ) 2 1 α ( 1 β HM ) β HM σ AB λ1 σ BA λ2
Δ x AMI 2 r AML = 2 W 2 1+ 1 α ( 1 β HM ) β HM σ AB λ1 σ BA λ2 λ 1 λ 2 W 2 4 W 1 4 PR
κ= Δ x AMI Δx .
κ= Δ x AMI Δx 1 1+ PR P R sat
P R sat =Γ σ BA λ2 σ AB λ1 λ 2 λ 1 ( W 1 W 2 ) 4
SBR= P det,1/ P det P det,1/
2 W 2 = 2 2 π λ 2 N A 2 0.9 λ 2 N A 2

Metrics