Abstract

Optoelectronic tweezers (OET) are a microsystem actuation technology capable of moving microparticles at mm s−1 velocities with nN forces. In this work, we analyze the behavior of particles manipulated by negative dielectrophoresis (DEP) forces in an OET trap. A user-friendly computer interface was developed to generate a circular rotating light pattern to control the movement of the particles, allowing their force profiles to be conveniently measured. Three-dimensional simulations were carried out to clarify the experimental results, and the DEP forces acting on the particles were simulated by integrating the Maxwell stress tensor. The simulations matched the experimental results and enabled the determination of a new “hopping” mechanism for particle-escape from the trap. As indicated by the simulations, there exists a vertical DEP force at the edge of the light pattern that pushes up particles to a region with a smaller horizontal DEP force. We propose that this phenomenon will be important to consider for the design of OET micromanipulation experiments for a wide range of applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays

Alicja Zarowna-Dabrowska, Steven L. Neale, David Massoubre, Jonathan McKendry, Bruce R. Rae, Robert K. Henderson, Mervyn J. Rose, Huabing Yin, Jonathan M. Cooper, Erdan Gu, and Martin D. Dawson
Opt. Express 19(3) 2720-2728 (2011)

Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells

Steven L. Neale, Aaron T. Ohta, Hsan-Yin Hsu, Justin K. Valley, Arash Jamshidi, and Ming C. Wu
Opt. Express 17(7) 5231-5239 (2009)

Manufacturing with light - micro-assembly of opto-electronic microstructures

Shuailong Zhang, Yongpeng Liu, Yang Qian, Weizhen Li, Joan Juvert, Pengfei Tian, Jean-Claude Navarro, Alasdair W Clark, Erdan Gu, Martin D. Dawson, Jonathan M. Cooper, and Steven L. Neale
Opt. Express 25(23) 28838-28850 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  2. A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
    [Crossref] [PubMed]
  3. H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip 11(1), 33–47 (2011).
    [Crossref]
  4. S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
    [Crossref] [PubMed]
  5. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
    [Crossref]
  6. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
    [Crossref]
  7. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
    [Crossref]
  8. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
    [Crossref]
  9. P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
    [Crossref] [PubMed]
  10. S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010).
    [Crossref] [PubMed]
  11. S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
    [Crossref]
  12. A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
    [Crossref] [PubMed]
  13. G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
    [Crossref]
  14. S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
    [Crossref]
  15. Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
    [Crossref] [PubMed]
  16. J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
    [Crossref]
  17. S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
    [Crossref] [PubMed]
  18. S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
    [Crossref]
  19. S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, “Carthwheel,” figshare (2017) [retrieved 24 Oct 2017], https://doi.org/10.6084/m9.figshare.5536627 .
  20. S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
    [Crossref] [PubMed]
  21. A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
    [Crossref]
  22. R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
    [Crossref] [PubMed]
  23. X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39(4), 277–295 (1997).
    [Crossref]
  24. S. Kumar and P. J. Hesketh, “Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling,” Sensor Actuat. B Chem. 161(1), 1198–1208 (2012).
    [Crossref]
  25. K. H. Kang, I. S. Kang, and C. M. Lee, “Wetting tension due to Coulombic interaction in charge-related wetting phenomena,” Langmuir 19(13), 5407–5412 (2003).
    [Crossref]
  26. M. Abdelgawad, P. Park, and A. R. Wheeler, “Optimization of device geometry in single-plate digital microfluidics,” J. Appl. Phys. 105(9), 094506 (2009).
    [Crossref]

2017 (2)

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

2016 (4)

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
[Crossref] [PubMed]

2015 (1)

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

2013 (2)

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
[Crossref]

2012 (1)

S. Kumar and P. J. Hesketh, “Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling,” Sensor Actuat. B Chem. 161(1), 1198–1208 (2012).
[Crossref]

2011 (2)

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip 11(1), 33–47 (2011).
[Crossref]

2010 (3)

S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010).
[Crossref] [PubMed]

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[Crossref] [PubMed]

2009 (4)

M. Abdelgawad, P. Park, and A. R. Wheeler, “Optimization of device geometry in single-plate digital microfluidics,” J. Appl. Phys. 105(9), 094506 (2009).
[Crossref]

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

2008 (1)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

2007 (2)

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

2003 (1)

K. H. Kang, I. S. Kang, and C. M. Lee, “Wetting tension due to Coulombic interaction in charge-related wetting phenomena,” Langmuir 19(13), 5407–5412 (2003).
[Crossref]

1997 (1)

X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39(4), 277–295 (1997).
[Crossref]

Abdelgawad, M.

M. Abdelgawad, P. Park, and A. R. Wheeler, “Optimization of device geometry in single-plate digital microfluidics,” J. Appl. Phys. 105(9), 094506 (2009).
[Crossref]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
[Crossref]

Banie, L.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

Bhardwaj, U.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Chang, C. J.

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

Chiou, P. Y.

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

Chui, C. O.

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

Clark, A. W.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

Cooper, J. M.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
[Crossref] [PubMed]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Dawson, M. D.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

Dawson, M. M.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
[Crossref]

Dholakia, K.

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

Eddie, I.

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
[Crossref]

Garcia, M.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

Gascoyne, P. R. C.

X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39(4), 277–295 (1997).
[Crossref]

Gu, E.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Han, T. H.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Henderson, R. K.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Hesketh, P. J.

S. Kumar and P. J. Hesketh, “Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling,” Sensor Actuat. B Chem. 161(1), 1198–1208 (2012).
[Crossref]

Hsieh, C. H.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Hsu, H. Y.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

Hsu, H.-Y.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

Hsu, L.

Huang, H. P.

Huang, S. B.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Hwang, H.

H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip 11(1), 33–47 (2011).
[Crossref]

Jamshidi, A.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

Jiao, N.

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

Juvert, J.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
[Crossref] [PubMed]

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Kang, I. S.

K. H. Kang, I. S. Kang, and C. M. Lee, “Wetting tension due to Coulombic interaction in charge-related wetting phenomena,” Langmuir 19(13), 5407–5412 (2003).
[Crossref]

Kang, K. H.

K. H. Kang, I. S. Kang, and C. M. Lee, “Wetting tension due to Coulombic interaction in charge-related wetting phenomena,” Langmuir 19(13), 5407–5412 (2003).
[Crossref]

Kelly, A.

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

Krauss, T. F.

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

Ku, M. Y.

Kumar, S.

S. Kumar and P. J. Hesketh, “Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling,” Sensor Actuat. B Chem. 161(1), 1198–1208 (2012).
[Crossref]

Lee, C. M.

K. H. Kang, I. S. Kang, and C. M. Lee, “Wetting tension due to Coulombic interaction in charge-related wetting phenomena,” Langmuir 19(13), 5407–5412 (2003).
[Crossref]

Lee, G. B.

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Li, W.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

Liao, J. C.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Lin, H. C.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Lin, Y. H.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Liu, C. H.

Liu, L.

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

Liu, Y.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Lu, M. Y.

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

Lue, T.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

Luo, Y. Y.

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

Mao, Y.

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

Massoubre, D.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Mazilu, M.

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

McCabe, E. R. B.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

McKendry, J.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Mitchell, C. J.

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

Navarro, J.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

Navarro, J. C.

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Neale, S. L.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
[Crossref] [PubMed]

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

Ohta, A. T.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Park, J. K.

H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip 11(1), 33–47 (2011).
[Crossref]

Park, P.

M. Abdelgawad, P. Park, and A. R. Wheeler, “Optimization of device geometry in single-plate digital microfluidics,” J. Appl. Phys. 105(9), 094506 (2009).
[Crossref]

Pauzauskie, P. J.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

Pethig, R.

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[Crossref] [PubMed]

Qian, Y.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

Rae, B. R.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Reed, G. T.

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

Rose, M. J.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Satcher, J. H.

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

Schuck, P. J.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

Shin, K. S.

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

Sun, R.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Tian, P.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Tseng, C. P.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Tung, S.

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

Valley, J. K.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

Wang, C. H.

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

Wang, X.

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39(4), 277–295 (1997).
[Crossref]

Wang, X. B.

X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39(4), 277–295 (1997).
[Crossref]

Wheeler, A. R.

M. Abdelgawad, P. Park, and A. R. Wheeler, “Optimization of device geometry in single-plate digital microfluidics,” J. Appl. Phys. 105(9), 094506 (2009).
[Crossref]

Wilkinson, J. S.

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

Wilson, J. I. B.

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
[Crossref]

Wu, M. C.

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Wu, M. H.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Xie, S.

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

Yang, C. L.

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

Yang, S. M.

Yang, Y.

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

Yin, H.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Yu, F.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Yu, K.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

Yu, T. M.

Zarowna-Dabrowska, A.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

Zhang, S.

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
[Crossref] [PubMed]

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Appl. Phys. Lett. 95(11), 113104 (2009).
[Crossref] [PubMed]

S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navarro, J. M. Cooper, and S. L. Neale, “Use of optoelectronic tweezers in manufacturing - accurate solder bead positioning,” Appl. Phys. Lett. 109(22), 221110 (2016).
[Crossref]

Biomicrofluidics (1)

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Abdelgawad, P. Park, and A. R. Wheeler, “Optimization of device geometry in single-plate digital microfluidics,” J. Appl. Phys. 105(9), 094506 (2009).
[Crossref]

J. Electrostat. (1)

X. Wang, X. B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39(4), 277–295 (1997).
[Crossref]

J. Microelectromech. Syst. (1)

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[Crossref]

Lab Chip (4)

H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip 11(1), 33–47 (2011).
[Crossref]

S. Xie, X. Wang, N. Jiao, S. Tung, and L. Liu, “Programmable micrometer-sized motor array based on live cells,” Lab Chip 17(12), 2046–2053 (2017).
[Crossref] [PubMed]

A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H.-Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, and M. C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip 10(23), 3213–3217 (2010).
[Crossref] [PubMed]

S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, and G. B. Lee, “High-purity and labelfree isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force,” Lab Chip 13(7), 1371–1383 (2013).
[Crossref] [PubMed]

Langmuir (1)

K. H. Kang, I. S. Kang, and C. M. Lee, “Wetting tension due to Coulombic interaction in charge-related wetting phenomena,” Langmuir 19(13), 5407–5412 (2003).
[Crossref]

Laser Photon. Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7(6), 839–854 (2013).
[Crossref]

Microsyst. Nanoeng. (1)

G. B. Lee, C. J. Chang, C. H. Wang, M. Y. Lu, and Y. Y. Luo, “Continuous medium exchange and optically induced electroporation of cells in an integrated microfluidic system,” Microsyst. Nanoeng. 1, 15007 (2015).
[Crossref]

Nano Lett. (1)

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-power, and Light-actuated Patterning of Nanoparticles,” Nano Lett. 9(8), 2921–2925 (2009).
[Crossref] [PubMed]

Nat. Photon. (1)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photon. 2(2), 86–89 (2008).
[Crossref]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Opt. Exp. (5)

S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Opt. Exp. 15(20), 12619–12626 (2007).
[Crossref]

S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Exp. 17(7), 5231–5239 (2009).
[Crossref]

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform,” Opt. Exp. 24(16), 18163–18175 (2016).
[Crossref]

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, and M. M. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Exp. 19(3), 2720–2728 (2011).
[Crossref]

S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, and S. L. Neale, “Manufacturing with light - micro-assembly ofcopto-electronic microstructures,” Opt. Exp. 25(23), 28838–28850 (2017).
[Crossref]

Opt. Lett. (1)

Sci. Rep. (2)

S. Zhang, J. Juvert, J. M. Cooper, and S. L. Neale, “Manipulating and assembling metallic beads with optoelectronic tweezers,” Sci. Rep. 6, 32840 (2016).
[Crossref] [PubMed]

Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, and P. Y. Chiou, “Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media,” Sci. Rep. 6, 22630 (2016).
[Crossref] [PubMed]

Sensor Actuat. B Chem. (1)

S. Kumar and P. J. Hesketh, “Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling,” Sensor Actuat. B Chem. 161(1), 1198–1208 (2012).
[Crossref]

Other (1)

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, “Carthwheel,” figshare (2017) [retrieved 24 Oct 2017], https://doi.org/10.6084/m9.figshare.5536627 .

Supplementary Material (5)

NameDescription
» Code 1       Python tools to generate cartwheel-shaped light pattern for optoelectronic tweezers
» Visualization 1       The manipulation of a 20-µm-diameter bead at different rotational speeds by the cartwheel-shaped light pattern.
» Visualization 2       A 20-µm-diameter bead escaping the optoelectronic tweezer (OET) trap.
» Visualization 3       A 20-µm-diameter bead escaping the optoelectronic tweezer (OET) trap under different device operating conditions.
» Visualization 4       “Hopping” behaviors of polystyrene beads with diameters of 4.5, 7, 10 and 45 microns when escaping optoelectronic tweezer (OET) trap.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optoelectronic tweezers (OET) system used to evaluate object-escape behavior. (a) 3D schematic diagram of the OET device (not to scale). (b) Microscope image of a 20-µm-diameter polystyrene bead manipulated by the cartwheel-shaped light pattern. See Visualization 1 for a video showing the movement of the bead. (c) Reproduction of graphical user-interface from the custom control software used to control the experiments and collect data. The source code of the software is provided in Code 1 (Ref. [19]).
Fig. 2
Fig. 2 OET-trap bead manipulation. Microscope images of a 20-µm-diameter polystyrene bead being moved at linear velocities of (a) 24 µm/s and (b) 340 µm/s in the cartwheel-shaped light pattern. In these images, the cartwheel is rotating counter-clockwise, the bead is outlined in a red dashed line, and displacement D indicates the distance between bead center and the center of the line that pushes it. See Visualization 1 for a video showing the detailed process. (c) Plot of negative horizontal DEP force (experimental - blue markers; simulation -black line) as a function of D for beads manipulated at different velocities. Error bars for the experimental measurements represent ±1 standard deviation from five measurements for each condition. The simulation is a plot of corrected horizontal DEP force predicted by integrating the Maxwell Stress tensor for the system (described below).
Fig. 3
Fig. 3 3D numerical simulations of the OET trap. (a,d) Schematics and plots of simulated electric potential (b,e) and electric field (c,f) for an OET trap formed by illuminating a 40-µm-wide light pattern (shaded in green) with (a–c) or without (d–f) a 20-µm-diameter polystyrene bead straddling the edge of the light pattern. Z-X cut planes in (a,d) form the basis for the plots in (b–f), in which the simulated electric potential and field are indicated in heat maps (blue = low, red - high). In (b,c), the bead is illustrated as an open black circle. In (c,f), the insets are a magnified portion of the 1 µm × 3 µm (Z × X) region encompassing the edge of the light pattern.
Fig. 4
Fig. 4 Bead escape from an OET trap. (a)–(c) Video frames showing a 20-µm-diameter bead manipulated at a linear velocity of 489 µm/s, causing it to escape from the trap. See supplementary Visualization 2 for more details.
Fig. 5
Fig. 5 Simulated DEP force profiles generated by the Maxwell Stress tensor method. (a) Simulated horizontal DEP force (in the X-dimension) and (b) simulated vertical DEP force (in the Z-dimension) for a 20-µm-diameter polystyrene bead as a function of bead position in the X-dimension (represented by the horizontal axes of the graphs) and Z-dimension (represented as different colored plots).
Fig. 6
Fig. 6 Schematic of the proposed “hopping” mechanism for bead escape from a negative-DEP OET trap. When close to the surface, the negative horizontal DEP force (FDEPX, red arrow) compensates for viscous drag (FDrag, blue arrow). But after being pushed into the Z-dimension by negative vertical DEP force (FDEPZ, green arrow), the negative horizontal force can no longer compensate for viscous drag, and the bead escapes from the trap. Note that the vertical and horizontal force-arrows are not to scale. See supplementary Visualization 3 for the “hopping” effect of beads under different device operating conditions and supplementary Visualization 4 for the “hopping” effect of beads with different sizes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F D E P = F d r a g
F d r a g = 6 π η r ν
F D E P = 2 π r 3 ε m R e [ K ( ω ) ] E 2
σ i j = ε 0 E i E j + 1 μ 0 B i B j 1 2 ( ε 0 E 2 + 1 μ 0 B 2 ) δ i j
F D E P = s σ n d S

Metrics