Abstract

An optical fiber Fabry-Perot probe sensor for high-temperature measurement is proposed and demonstrated, which is fabricated by inducing a refractive-index-modified-dot (RIMD) in the fiber core near the end of a standard single mode fiber (SMF) using a femtosecond laser. The RIMD and the SMF end faces form a Fabry-Perot interferometer (FPI) with a high-quality interference fringe visibility (>20dB). As a high-temperature sensor, such an FPI exhibits a sensitivity of 13.9pm/°C and 18.6pm/°C in the range of 100-500°Cand 500-1000°C,respectively. The fabrication process of this device is quite straightforward, simple, time saving, and the sensor features small size, ease of fabrication, low cost, assembly-free, good mechanical strength, and high linear sensitivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Crystallization-sapphire-derived-fiber-based Fabry–Perot interferometer for refractive index and high-temperature measurement

Penghao Zhang, Li Zhang, Zissimos P. Mourelatos, and Zhongyu Wang
Appl. Opt. 57(30) 9016-9021 (2018)

Miniaturized fiber-taper-based Fabry–Perot interferometer for high-temperature sensing

Zhangwen Liu, Xueguang Qiao, and Ruohui Wang
Appl. Opt. 56(2) 256-259 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. de Oliveira, M. Muller, and H. J. Kalinowski, “Bragg gratings in standard nonhydrogenated fibers for high-temperature sensing,” Appl. Opt. 50(25), E55–E58 (2011).
    [Crossref]
  2. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  3. A. A. Jasim, S. W. Harun, H. Arof, and H. Ahmad, “Inline Microfiber Mach-Zehnder Interferometer for High Temperature Sensing,” IEEE Sens. J. 13(2), 626–628 (2013).
    [Crossref]
  4. J. E. Antonio-Lopez, Z. S. Eznaveh, P. L. Wa, A. Schulzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 degrees C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  5. A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
    [Crossref] [PubMed]
  6. X. Hu, X. Shen, J. Wu, J. Peng, L. Yang, J. Li, H. Li, and N. Dai, “All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber,” Opt. Express 24(19), 21693–21699 (2016).
    [Crossref] [PubMed]
  7. J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
    [Crossref]
  8. B. Dong, L. Wei, and D. P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48(33), 6466–6469 (2009).
    [Crossref] [PubMed]
  9. X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
    [Crossref]
  10. J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
    [Crossref] [PubMed]
  11. N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
    [Crossref]
  12. L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
    [Crossref] [PubMed]
  13. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  14. Y. Y. Yu, L. Jiang, B. Y. Li, S. M. Wang, and H. B. Wu, “High-temperature reflective sensor based on single fusion-splicing fiber taper without coating,” Chin. Opt. Lett. 10(12), 122801 (2012).
    [Crossref]
  15. L. Xu, L. Jiang, S. Wang, B. Li, and Y. Lu, “High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber,” Appl. Opt. 52(10), 2038–2041 (2013).
    [Crossref] [PubMed]
  16. C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
    [Crossref]
  17. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
    [Crossref] [PubMed]
  18. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  19. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [Crossref] [PubMed]
  20. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [Crossref] [PubMed]
  21. M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
    [Crossref] [PubMed]
  22. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref] [PubMed]
  23. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
    [Crossref] [PubMed]
  24. M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
    [Crossref] [PubMed]
  25. J. Zhang, H. Sun, Q. Rong, Y. Ma, L. Liang, Q. Xu, P. Zhao, Z. Feng, M. Hu, and X. Qiao, “High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber,” Chin. Opt. Lett. 10(7), 070607 (2012).
    [Crossref]
  26. Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
    [Crossref]
  27. X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer,” Appl. Opt. 52(34), 8195–8198 (2013).
    [Crossref] [PubMed]
  28. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  29. J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-Fiber Fabry-Perot Cavity Sensor for High-Temperature Applications,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
    [Crossref]
  30. Z. Liu, X. Qiao, and R. Wang, “Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing,” Appl. Opt. 56(2), 256–259 (2017).
    [Crossref] [PubMed]
  31. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref] [PubMed]
  32. R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
    [Crossref] [PubMed]
  33. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [Crossref] [PubMed]
  34. Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
    [Crossref] [PubMed]
  35. P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (4)

2014 (5)

2013 (6)

2012 (3)

2011 (3)

2010 (3)

2009 (2)

2008 (3)

2005 (1)

2001 (1)

Ahmad, H.

A. A. Jasim, S. W. Harun, H. Arof, and H. Ahmad, “Inline Microfiber Mach-Zehnder Interferometer for High Temperature Sensing,” IEEE Sens. J. 13(2), 626–628 (2013).
[Crossref]

Aichele, C.

Amezcua-Correa, R.

André, R. M.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Arof, H.

A. A. Jasim, S. W. Harun, H. Arof, and H. Ahmad, “Inline Microfiber Mach-Zehnder Interferometer for High Temperature Sensing,” IEEE Sens. J. 13(2), 626–628 (2013).
[Crossref]

Bartelt, H.

Becker, M.

Bierlich, J.

Cao, H.

Carter, R. M.

Chan, C. C.

Chen, L. H.

Chen, P.

Choi, E. S.

Choi, H. Y.

Chung, Y.

Coelho, L.

Coviello, G.

Dai, N.

de Oliveira, V.

Dellith, J.

Deng, Y. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Dianov, E.

Dong, B.

Dong, X.

Donlagic, D.

Du, Y.

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

Duan, D. W.

Duan, L.

Eznaveh, Z. S.

Favero, F. C.

Feng, D.

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

Feng, J.

Feng, Z.

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

J. Zhang, H. Sun, Q. Rong, Y. Ma, L. Liang, Q. Xu, P. Zhao, Z. Feng, M. Hu, and X. Qiao, “High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber,” Chin. Opt. Lett. 10(7), 070607 (2012).
[Crossref]

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Fu, H.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Fu, H. Y.

Fu, S.

Gan, L.

Gao, H.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Gao, R.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer,” Appl. Opt. 52(34), 8195–8198 (2013).
[Crossref] [PubMed]

Geng, Y.

Geng, Y. F.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Guan, B. O.

Han, Y.

Hand, D. P.

Harun, S. W.

A. A. Jasim, S. W. Harun, H. Arof, and H. Ahmad, “Inline Microfiber Mach-Zehnder Interferometer for High Temperature Sensing,” IEEE Sens. J. 13(2), 626–628 (2013).
[Crossref]

Havermann, D.

He, S. L.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Horng, J.-S.

C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Hou, Y. S.

Hsu, J.-M.

C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Hu, M.

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

J. Zhang, H. Sun, Q. Rong, Y. Ma, L. Liang, Q. Xu, P. Zhao, Z. Feng, M. Hu, and X. Qiao, “High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber,” Chin. Opt. Lett. 10(7), 070607 (2012).
[Crossref]

Hu, X.

Huang, Z.

Hwang, D.

Jasim, A. A.

A. A. Jasim, S. W. Harun, H. Arof, and H. Ahmad, “Inline Microfiber Mach-Zehnder Interferometer for High Temperature Sensing,” IEEE Sens. J. 13(2), 626–628 (2013).
[Crossref]

Jiang, L.

Just, F.

Kalinowski, H. J.

Kobelke, J.

Kou, J. L.

Lee, B. H.

Lee, C.-L.

C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Li, B.

Li, B. Y.

Li, C.-M.

C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Li, H.

X. Hu, X. Shen, J. Wu, J. Peng, L. Yang, J. Li, H. Li, and N. Dai, “All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber,” Opt. Express 24(19), 21693–21699 (2016).
[Crossref] [PubMed]

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Li, J.

Li, X.

Li, X. J.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Li, Y.

Liang, L.

Liu, D.

Liu, Q.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Liu, Y.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
[Crossref] [PubMed]

Liu, Z.

Lu, Y.

Lu, Y. Q.

Ma, Y.

MacPherson, W. N.

Maier, R. R. J.

Marques, M. B.

Mathew, J.

Moon, D. S.

Moon, S.

Mudhana, G.

Muller, M.

Nguyen, L. V.

Okhotnikov, O.

Paek, U. C.

Paek, U.-C.

Park, K. S.

Park, S. J.

Peng, J.

Pevec, S.

Polyzos, D.

Pruneri, V.

Qiao, X.

Z. Liu, X. Qiao, and R. Wang, “Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing,” Appl. Opt. 56(2), 256–259 (2017).
[Crossref] [PubMed]

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

J. Zhang, H. Sun, Q. Rong, Y. Ma, L. Liang, Q. Xu, P. Zhao, Z. Feng, M. Hu, and X. Qiao, “High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber,” Chin. Opt. Lett. 10(7), 070607 (2012).
[Crossref]

Qu, S.

Qureshi, K. K.

Rao, Y. J.

Rego, G.

Rong, Q.

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

J. Zhang, H. Sun, Q. Rong, Y. Ma, L. Liang, Q. Xu, P. Zhao, Z. Feng, M. Hu, and X. Qiao, “High-temperature sensor using a Fabry-Perot interferometer based on solid-core photonic crystal fiber,” Chin. Opt. Lett. 10(7), 070607 (2012).
[Crossref]

Roriz, P.

Rothhardt, M.

Salceda-Delgado, G.

Santos, J. L.

Schneller, O.

Schulzgen, A.

Schülzgen, A.

Schuster, K.

Shao, M.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Shen, F.

Shen, X.

Shu, X.

Shum, P. P.

Spittel, R.

Su, H.

Sugden, K.

Sulimov, V.

Sun, H.

Sung, W.-Y.

C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Tam, H. Y.

Tan, X.

Tan, X. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Tang, M.

Tong, W.

Tsai, H. L.

Van Newkirk, A.

Villatoro, J.

Wa, P. L.

Wang, A.

Wang, R.

Wang, S.

Wang, S. M.

Wei, L.

Wei, T.

Wondraczek, K.

Wu, C.

Wu, H. B.

Wu, J.

Xia, T. H.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Xiao, H.

Xu, F.

Xu, L.

Xu, Q.

Xue, W.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Yan, X.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Yang, H.

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

Yang, J.

Yang, L.

Ye, L.

Yin, Z.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer,” Appl. Opt. 52(34), 8195–8198 (2013).
[Crossref] [PubMed]

Yu, Y. Q.

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Yu, Y. Y.

Zhang, A. P.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhang, J.

Zhang, P.

Zhao, N.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Zhao, P.

Zhao, Z.

Zheng, Y.

Zhou, D. P.

Zhu, B.

Zhu, J. J.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhu, T.

Zhu, Y.

Appl. Opt. (6)

Chin. Opt. Lett. (2)

IEEE Photonics J. (1)

X. L. Tan, Y. F. Geng, X. J. Li, Y. Q. Yu, Y. L. Deng, Z. Yin, and R. Gao, “Core Mode-Cladding Supermode Modal Interferometer and High-Temperature Sensing Application Based on All-Solid Photonic Bandgap Fiber,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C.-L. Lee, J.-M. Hsu, J.-S. Horng, W.-Y. Sung, and C.-M. Li, “Microcavity Fiber Fabry-Perot Interferometer With an Embedded Golden Thin Film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

IEEE Sens. J. (3)

Y. Du, X. Qiao, Q. Rong, H. Yang, D. Feng, R. Wang, M. Hu, and Z. Feng, “A Miniature Fabry-Perot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber,” IEEE Sens. J. 14(4), 1069–1073 (2014).
[Crossref]

A. A. Jasim, S. W. Harun, H. Arof, and H. Ahmad, “Inline Microfiber Mach-Zehnder Interferometer for High Temperature Sensing,” IEEE Sens. J. 13(2), 626–628 (2013).
[Crossref]

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (1)

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Opt. Express (9)

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
[Crossref] [PubMed]

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
[Crossref] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[Crossref] [PubMed]

J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
[Crossref] [PubMed]

L. Duan, P. Zhang, M. Tang, R. Wang, Z. Zhao, S. Fu, L. Gan, B. Zhu, W. Tong, D. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref] [PubMed]

X. Hu, X. Shen, J. Wu, J. Peng, L. Yang, J. Li, H. Li, and N. Dai, “All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber,” Opt. Express 24(19), 21693–21699 (2016).
[Crossref] [PubMed]

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref] [PubMed]

F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
[Crossref] [PubMed]

R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, “Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications,” Opt. Express 22(11), 13102–13108 (2014).
[Crossref] [PubMed]

Opt. Lett. (10)

J. E. Antonio-Lopez, Z. S. Eznaveh, P. L. Wa, A. Schulzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 degrees C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
[Crossref] [PubMed]

P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
[Crossref] [PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[Crossref] [PubMed]

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[Crossref] [PubMed]

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[Crossref] [PubMed]

T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) System schematic for inducing a refractive index modified dot in fiber core using a femtosecond laser to form FPI. (b) The top and the side (c) view of microscope images of the fabricated FPI.
Fig. 2
Fig. 2 Calculated reflection spectra for different Δ n .
Fig. 3
Fig. 3 Measured reflection spectra of FPI probes with different cavity lengths (a) 120μm, (b) 60μm and (c) 30μm.
Fig. 4
Fig. 4 Spectral response of a FPI probe with 60 μm cavity length at different temperatures.
Fig. 5
Fig. 5 Interference dip wavelength at ~1558nm with temperature variation for the heating and cooling cycle.
Fig. 6
Fig. 6 Linear fit at low temperature and high temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = R 1 + A 2 R 2 + B 2 R 3 - 2 R 1 R 2 A cos ( 2 φ 1 ) - 2 R 1 R 3 B cos ( 2 φ 1 + 2 φ 2 ) + 2 A B R 2 R 3 cos ( 2 φ 2 )
F S R λ 2 2 n c o L 2
S = λ T = ( 1 n c o n c o T + 1 L 2 L 2 T ) λ = ( α T + ξ T ) λ
λ = B 2 T 2 + B 2 T + I n t e r c e p t

Metrics