Abstract

We study the nonlinear frequency up-conversion in a plasmonic thin film sandwiched between one-dimensional photonic crystals (PCs) of different Zak phases by rigorous numerical time-domain nonlinear hydrodynamic calculations. We show that the proposed hetero-structure can support robust fundamental and high-order topological edge modes that simultaneously enhance the third-harmonic generation. Numerical simulations also show that femtosecond pulses can excite double topological edge modes through optical tunneling in band gaps, leading to a large nonlinear response. The obtained third harmonic generation (THG) conversion efficiency of the hetero-structure is three orders of magnitude larger than that of a single plasmonic film. The results presented here may open new avenues for designing high-efficiency nonlinear photonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced nonlinear optical responses of graphene in multi-frequency topological edge modes

Jun Guo, Haotian Wang, Xiaoyu Dai, Yuanjiang Xiang, and Dingyuan Tang
Opt. Express 27(22) 32746-32763 (2019)

Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals

Ka Hei Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and Kin Hung Fung
Opt. Lett. 41(7) 1644-1647 (2016)

Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic crystals

Lei Wang, Wei Cai, Mengli Bie, Xinzheng Zhang, and Jingjun Xu
Opt. Express 26(22) 28963-28975 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  2. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
    [Crossref]
  3. J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
    [Crossref] [PubMed]
  4. S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
    [Crossref] [PubMed]
  5. O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
    [Crossref] [PubMed]
  6. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
    [Crossref] [PubMed]
  7. I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).
  8. B. I. Afinogenov, V. O. Bessonov, and A. A. Fedyanin, “Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons,” Opt. Lett. 39(24), 6895–6898 (2014).
    [Crossref] [PubMed]
  9. Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
    [Crossref]
  10. K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
    [Crossref] [PubMed]
  11. K. Leosson, S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, B. Agnarsson, F. Magnus, S. Olafsson, J. T. Gudmundsson, E. B. Magnusson, and I. A. Shelykh, “Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors,” Opt. Lett. 37(19), 4026–4028 (2012).
    [Crossref] [PubMed]
  12. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett. 35(24), 4112–4114 (2010).
    [Crossref] [PubMed]
  13. N. Horiuchi, “Topological insulators: Nonlinear opportunities,” Nat. Photonics 9(12), 784 (2015).
    [Crossref]
  14. L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological states in photonic systems,” Nat. Phys. 12(7), 626–629 (2016).
    [Crossref]
  15. L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
    [Crossref]
  16. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
    [Crossref] [PubMed]
  17. W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
    [Crossref]
  18. M. Xiao, Z. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4(2), 021017 (2014).
    [Crossref]
  19. Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
    [Crossref]
  20. K. H. Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and K. H. Fung, “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals,” Opt. Lett. 41(7), 1644–1647 (2016).
    [Crossref] [PubMed]
  21. A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
    [Crossref] [PubMed]
  22. J. Benedicto, R. Pollès, C. Ciracì, E. Centeno, D. R. Smith, and A. Moreau, “Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers,” J. Opt. Soc. Am. A 32(8), 1581–1588 (2015).
    [Crossref] [PubMed]
  23. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
    [Crossref]
  24. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
    [Crossref]
  25. M. Fang, Z. Huang, W. E. Sha, X. Y. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” arXiv preprint arXiv:1610.09624 (2016).
  26. Y. Zhao and J. Liu, “FDTD for Hydrodynamic Electron Fluid Maxwell Equations,” Photonics 2(2), 459–467 (2015).
    [Crossref]
  27. A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
    [Crossref]
  28. S. Ghosh, N. Chakrabarti, and F. Haas, “New nonlinear structures in a degenerate one-dimensional electron gas,” Europhys. Lett. 105(3), 30006 (2014).
    [Crossref]

2016 (5)

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological states in photonic systems,” Nat. Phys. 12(7), 626–629 (2016).
[Crossref]

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

K. H. Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and K. H. Fung, “Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals,” Opt. Lett. 41(7), 1644–1647 (2016).
[Crossref] [PubMed]

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

2015 (4)

Y. Zhao and J. Liu, “FDTD for Hydrodynamic Electron Fluid Maxwell Equations,” Photonics 2(2), 459–467 (2015).
[Crossref]

J. Benedicto, R. Pollès, C. Ciracì, E. Centeno, D. R. Smith, and A. Moreau, “Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers,” J. Opt. Soc. Am. A 32(8), 1581–1588 (2015).
[Crossref] [PubMed]

N. Horiuchi, “Topological insulators: Nonlinear opportunities,” Nat. Photonics 9(12), 784 (2015).
[Crossref]

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

2014 (5)

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

B. I. Afinogenov, V. O. Bessonov, and A. A. Fedyanin, “Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons,” Opt. Lett. 39(24), 6895–6898 (2014).
[Crossref] [PubMed]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

M. Xiao, Z. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

S. Ghosh, N. Chakrabarti, and F. Haas, “New nonlinear structures in a degenerate one-dimensional electron gas,” Europhys. Lett. 105(3), 30006 (2014).
[Crossref]

2013 (1)

2012 (6)

K. Leosson, S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, B. Agnarsson, F. Magnus, S. Olafsson, J. T. Gudmundsson, E. B. Magnusson, and I. A. Shelykh, “Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors,” Opt. Lett. 37(19), 4026–4028 (2012).
[Crossref] [PubMed]

I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

2011 (2)

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

2004 (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

1979 (1)

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Afinogenov, B. I.

Agnarsson, B.

Baryshev, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Bellessa, J.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Belov, P. A.

I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).

Benedicto, J.

Bessonov, V. O.

Bloch, J.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Brevet, P.-F.

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Busch, K.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Butet, J.

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Centeno, E.

Chakrabarti, N.

S. Ghosh, N. Chakrabarti, and F. Haas, “New nonlinear structures in a degenerate one-dimensional electron gas,” Europhys. Lett. 105(3), 30006 (2014).
[Crossref]

Chan, C.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

Chan, C. T.

M. Xiao, Z. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Cheah, K. W.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Chen, S.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Choi, J.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Choi, K. H.

Ciracì, C.

J. Benedicto, R. Pollès, C. Ciracì, E. Centeno, D. R. Smith, and A. Moreau, “Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers,” J. Opt. Soc. Am. A 32(8), 1581–1588 (2015).
[Crossref] [PubMed]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Dorofeenko, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Eng, L. M.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Fedyanin, A. A.

Fung, K. H.

Gauthron, K.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Ghosh, S.

S. Ghosh, N. Chakrabarti, and F. Haas, “New nonlinear structures in a degenerate one-dimensional electron gas,” Europhys. Lett. 105(3), 30006 (2014).
[Crossref]

Ginzburg, P.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Goto, T.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Grafström, S.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Granovsky, A. B.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Guang, Y.

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

Gudmundsson, J. T.

Haas, F.

S. Ghosh, N. Chakrabarti, and F. Haas, “New nonlinear structures in a degenerate one-dimensional electron gas,” Europhys. Lett. 105(3), 30006 (2014).
[Crossref]

Hai-Chun, Z.

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

Heeger, A. J.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Hille, A.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Horiuchi, N.

N. Horiuchi, “Topological insulators: Nonlinear opportunities,” Nat. Photonics 9(12), 784 (2015).
[Crossref]

Hua, L.

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

Inoue, M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Iorsh, I.

I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).

Joannopoulos, J. D.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological states in photonic systems,” Nat. Phys. 12(7), 626–629 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

Kai, W.

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kim, K.

Kim, S.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Kim, S.-W.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Kim, Y.-J.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Kivshar, Y. S.

I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).

Kling, M. F.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Kossoy, A.

Krasavin, A. V.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Lee, D.-H.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Lee, K. F.

Lee, K. J.

Lemaître, A.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Leosson, K.

Li, G.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Ling, C. W.

Lisyansky, A. A.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Liu, H.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

Liu, J.

Y. Zhao and J. Liu, “FDTD for Hydrodynamic Electron Fluid Maxwell Equations,” Photonics 2(2), 459–467 (2015).
[Crossref]

Long, H.

Lu, L.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological states in photonic systems,” Nat. Phys. 12(7), 626–629 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Lu, P.

Magnus, F.

Magnusson, E. B.

Martin, O. J.

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Matyssek, C.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Merzlikin, A. M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Moeferdt, M.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Moreau, A.

Niegemann, J.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Olafsson, S.

Park, I.-Y.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Pei-Xiang, L.

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

Pollès, R.

Poutrina, E.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Prohm, C.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Pun, E. Y. B.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Rodríguez-Oliveros, R.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Scalora, M.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

Schrieffer, J. R.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Senellart, P.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Shadrivov, I. V.

I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).

Shayestehaminzadeh, S.

Shelykh, I. A.

Smith, D. R.

J. Benedicto, R. Pollès, C. Ciracì, E. Centeno, D. R. Smith, and A. Moreau, “Numerical tool to take nonlocal effects into account in metallo-dielectric multilayers,” J. Opt. Soc. Am. A 32(8), 1581–1588 (2015).
[Crossref] [PubMed]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Soljacic, M.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological states in photonic systems,” Nat. Phys. 12(7), 626–629 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

Stockman, M. I.

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

Su, W. P.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

Symonds, C.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Tryggvason, T. K.

Tsang, Y. H.

Vinogradov, A. P.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Voisin, P.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Wang, K.

Wang, Q.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

Wolff, C.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Wong, W. H.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Wu, J. W.

Wurtz, G. A.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Xiao, M.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

M. Xiao, Z. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Yang, G.

Zayats, A. V.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zentgraf, T.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Zeuner, F.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

Zhang, Z.

M. Xiao, Z. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Zhao, Y.

Y. Zhao and J. Liu, “FDTD for Hydrodynamic Electron Fluid Maxwell Equations,” Photonics 2(2), 459–467 (2015).
[Crossref]

Zhou, H.

Zhu, S.

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

ACS Nano (1)

J. Butet, P.-F. Brevet, and O. J. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9(11), 10545–10562 (2015).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

Z. Hai-Chun, Y. Guang, W. Kai, L. Hua, and L. Pei-Xiang, “Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film,” Chin. Phys. Lett. 29(6), 067101 (2012).
[Crossref]

Europhys. Lett. (1)

S. Ghosh, N. Chakrabarti, and F. Haas, “New nonlinear structures in a degenerate one-dimensional electron gas,” Europhys. Lett. 105(3), 30006 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120(2), 1163–1169 (2016).
[Crossref]

Nat. Commun. (1)

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

Nat. Photonics (4)

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011).
[Crossref]

N. Horiuchi, “Topological insulators: Nonlinear opportunities,” Nat. Photonics 9(12), 784 (2015).
[Crossref]

Nat. Phys. (1)

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological states in photonic systems,” Nat. Phys. 12(7), 626–629 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Photonics (1)

Y. Zhao and J. Liu, “FDTD for Hydrodynamic Electron Fluid Maxwell Equations,” Photonics 2(2), 459–467 (2015).
[Crossref]

Phys. Rev. B (3)

Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. Chan, “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93(4), 041415 (2016).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Phys. Rev. Lett. (4)

W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Phys. Rev. Lett. 42(25), 1698–1701 (1979).
[Crossref]

S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, “Symmetry-selective third-harmonic generation from plasmonic metacrystals,” Phys. Rev. Lett. 113(3), 033901 (2014).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for Confined Tamm Plasmon Modes under Metallic Microdisks and Application to the Control of Spontaneous Optical Emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Xiao, Z. Zhang, and C. T. Chan, “Surface impedance and bulk band geometric phases in one-dimensional systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Phys. Status Solidi (1)

I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Nonlinear Tamm states in layered metal–dielectric metamaterials,” Phys. Status Solidi 6(1), 43–45 (2012).

Other (1)

M. Fang, Z. Huang, W. E. Sha, X. Y. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” arXiv preprint arXiv:1610.09624 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a), (b) Schematic view of the 1-D binary PCs model constructed by connecting two 1-D PCs X and Y with (a) and without (b) a thin plasmonic film at the centre, where X and Y contain N unit cells with the period Λ = 1000 nm . The parameters of PC X are given by d A = 0.396 Λ , n A = 2.51 , d B = 0.604 Λ n B = 1.5 , μ A = μ B = 1 and the parameters of PC Y are given by d C = 0.342 Λ , n C = 2.67 , d B = 0.658 Λ , n B = 1.5 , μ c = μ B = 1 . The thickness of the plasmonic film d M = 5 nm . (c) Transmission spectrum of the 1-D binary PC with (blue dashed line) and without (green solid line) a 5 n m plasmonic film, when the number of unit cells N = 4 on both sides.
Fig. 2
Fig. 2 (a) The transmission spectrum of X + Y PCs, where the number of unit cells N = 4 on both sides. The parameters of PC X are given by n A = 2.51 , n B = 1.5 , d A = 0.396 Λ , d B = 0.604 Λ , and the parameters of PC Y’ are given by n B = 1.5 , n C = 2.67 , d B = 0.658 Λ , d C = 0.342 Λ , where Λ = 1000 nm is the unit length of the PCs. Red arrows indicate that there are fundamental and third harmonic topological edge modes. (b), (c) Real part of complex band structure (solid blue curve) of PC   X and PC Y , and the Zak phase of each individual band is also labelled in (b) and (c).
Fig. 3
Fig. 3 (a) Nonlinear transmission spectrum for the 1-D binary PC containing a thin plasmonic film with different input pump power. (b) The peak intensities of the third harmonics vs. the third power of the fundamental intensities.
Fig. 4
Fig. 4 (a) Nonlinear transmission spectrum for the hetero-structure 1-D binary PC containing a thin plasmonic film (blue dashed line) and a single plasmonic film (green solid line). (b) The conversion efficiency of the hetero-structure 1-D binary PC containing a thin plasmonic film (blue line with square) and a single plasmonic film (green line with circle) vs. the input intensities, when the normalized central frequency is 1.318.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

× E = μ H t ,
× H = n e u + ε E t ,
n t + ( n u ) = 0 ,
m m [ u t + ( u ) u + γ u ] = e n E + e n μ u × H p ,
p = 2 ( 3 π 2 ) 2 3 5 m ( n ) 5 3 ,
α Λ = n A d A + n B d B ,
θ m Zak = π Λ π Λ [ i unit cell ε ( z ) u m , K * ( z ) K u m , K ( z ) d z ] d K ,
E z inc = E 0 sin ( 2 π f 0 t ) exp [ 4 π ( t t 0 ) 2 τ 2 ] ,

Metrics