Abstract

A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12–29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband microwave absorption utilizing water-based metamaterial structures

Junming Zhao, Shu Wei, Cheng Wang, Ke Chen, Bo Zhu, Tian Jiang, and Yijun Feng
Opt. Express 26(7) 8522-8531 (2018)

Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances

Mohammad Mehrabi, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani
Appl. Opt. 57(14) 3693-3703 (2018)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-IEEE, 2006).
    [Crossref]
  2. F. Capolino, Theory and Phenomena of Metamaterials (CRC, 2009).
    [Crossref]
  3. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
    [Crossref] [PubMed]
  4. A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
    [Crossref]
  6. Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25, 32150–32160 (2017).
    [Crossref] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  8. Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
    [Crossref] [PubMed]
  9. P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [Crossref] [PubMed]
  10. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011).
    [Crossref]
  11. Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
    [Crossref]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  13. W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
    [Crossref]
  14. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [PubMed]
  15. H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  16. S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
    [Crossref]
  17. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
    [Crossref] [PubMed]
  18. Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
    [Crossref]
  19. M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the terahertz regime,” Opt. Express 20, 25513–25519 (2012).
    [Crossref] [PubMed]
  20. W. Ellison, “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C,” J. Phys. Chem. Ref. Data 36, 1–18 (2007)
    [Crossref]
  21. A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
    [Crossref] [PubMed]
  22. Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
    [Crossref] [PubMed]
  23. W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
    [Crossref] [PubMed]
  24. Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
    [Crossref]
  25. M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
    [Crossref]
  26. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
    [Crossref]

2017 (3)

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25, 32150–32160 (2017).
[Crossref] [PubMed]

2016 (2)

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

2015 (4)

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

2013 (2)

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the terahertz regime,” Opt. Express 20, 25513–25519 (2012).
[Crossref] [PubMed]

2010 (1)

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

2009 (1)

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

2007 (1)

W. Ellison, “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C,” J. Phys. Chem. Ref. Data 36, 1–18 (2007)
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Agrawal, G. P.

M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011).
[Crossref]

Andryieuski, A.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Baimuratov, A. S.

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Baranov, A. V.

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Belov, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Bong, J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Bossard, J. A.

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

Cai, W.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

Cao, J.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Capolino, F.

F. Capolino, Theory and Phenomena of Metamaterials (CRC, 2009).
[Crossref]

Cheng, C.

Cheng, Q.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Cui, T.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Dong, Z.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Economou, E. N.

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Ellison, W.

W. Ellison, “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C,” J. Phys. Chem. Ref. Data 36, 1–18 (2007)
[Crossref]

Engheta, N.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-IEEE, 2006).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Fedorov, A. V.

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Geng, J.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Gu, S.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

He, C.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25, 32150–32160 (2017).
[Crossref] [PubMed]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Hu, C.

Huang, C.

Jiang, Z. H.

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

Jin, R.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Ju, S.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kang, L.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

Kang, M.

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

Kapitanova, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

Kim, K. W.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Kim, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Koschny, Th.

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Kuznetsova, S. M.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Lavrinenko, A. V.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Lee, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Leonov, M. Yu.

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Li, T.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Li, X.

Liang, X.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Lim, T.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Lin, L.

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

Liu, C.

Liu, H.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Luo, X.

Ma, H.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Ma, L.

Mayer, T. S.

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

Mitchell, A.

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Odit, M.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Pang, Y.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

Park, S. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Pei, Z.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Pereziabova, T. P.

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Phelan, P.

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Premaratne, M.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011).
[Crossref]

Pu, M.

Qu, S.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Rhee, J. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

Rosengarten, G.

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Rukhlenko, I. D.

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Rukihlenko, I. D.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Sivan, P. V.

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Su, B.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Tassin, P.

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Wang, H.

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, J.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

Wang, L.

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, M.

Wang, S.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Wang, Y.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Werner, D. H.

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

Xia, S.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Xiao, F.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Xu, Z.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Yoo, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Yun, S.

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

Zhang, Lei

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Zhang, R.

Zhang, X.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Zhang, Y.

Zhao, X.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

Zhao, Z.

Zhou, X.

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

Zhu, S.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Zhu, W.

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Zhu, Z.

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

Zhukovsky, S. V.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-IEEE, 2006).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Appl. Phys. Lett. (4)

Z. Dong, H. Liu, T. Li, Z. Zhu, S. Wang, J. Cao, S. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010).
[Crossref]

W. Zhu, F. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
[Crossref]

Y. Pang, J. Wang, Q. Cheng, S. Xia, X. Zhou, Z. Xu, T. Cui, and S. Qu, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 110, 104103 (2017)
[Crossref]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Thermally tunable water-substrate broadband metamaterial absorbers,” Appl. Phys. Lett. 109, 011901 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultra-broadband terahertz absorption by uniaxial anisotropic nanowire metamaterials,” IEEE Photon. Technol. Lett. 27, 2284 (2015).
[Crossref]

J. Appl. Phys. (1)

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

J. Phys. Chem. Ref. Data (1)

W. Ellison, “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C,” J. Phys. Chem. Ref. Data 36, 1–18 (2007)
[Crossref]

Nano Lett. (3)

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14, 1021–1025 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical anisotropy of topologically distorted semiconductor nanocrystals,” Nano Lett. 14, 1021–1025 (2014).

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443 (2012).
[Crossref] [PubMed]

Nature Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Opt. Express (2)

Optics Express (1)

W. Zhu, I. D. Rukihlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Optics Express 25, 15737–15745 (2017).
[Crossref] [PubMed]

Phys. Rev. B (1)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

P. Tassin, Lei Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Sci. Rep. (3)

Z. H. Jiang, S. Yun, L. Lin, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions,” Sci. Rep. 3, 1571 (2013).
[Crossref] [PubMed]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5, 13535 (2015).
[Crossref] [PubMed]

Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5, 14018 (2015).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, P. V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (3)

M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011).
[Crossref]

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-IEEE, 2006).
[Crossref]

F. Capolino, Theory and Phenomena of Metamaterials (CRC, 2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the water metamaterial absorber, (b) layer by layer view of the unit cell, and (c) cut plane view of the water layer.
Fig. 2
Fig. 2 Absorptivity spectra of the water metamaterial absorber, the full water layer backed by a metal plate, the metamaterial without water, and the metamaterial without metal back layer. The dotted horizontal line denotes the absorptivity of 90%.
Fig. 3
Fig. 3 Vector distributions of (a) electric and (b) magnetic fields at resonance frequencies: 13.0 GHz (top), 19.6 GHz (middle), and 27.3 GHz (bottom).
Fig. 4
Fig. 4 The power loss densities of water metamaterial absorber at (a) 13.0 GHz, (b) 19.6 GHz and at (c) 27.3 GHz.
Fig. 5
Fig. 5 The comparison of the simulated and measured absorptivity spectra of the water metamaterial absorber. The insert (a) shows the as-prepared metamaterial absorber consisting of 6 × 6 substructures (i.e., 12 × 12 unit cells) and (b) is a substructure made of 2 × 2 array of unit cells.
Fig. 6
Fig. 6 Absorptivity spectra at different temperatures.
Fig. 7
Fig. 7 Absorptivity spectra of the water metamaterial absorber for oblique incidence waves with incident angle from 0 to 75°. (a) TM mode and (b) TE mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + ε s ε 1 i ω τ ,
ε 0 ( T ) = a 1 b 1 T + c 1 T 2 d 1 T 3 ,
ε ( T ) = ε 0 ( T ) a 2 e b 2 T ,
τ ( T ) = c 2 e d 2 T + T 0 ,

Metrics