Abstract

Silicon photonics has been longing for an efficient on-chip light source that is electrically driven at room temperature. Microdisk laser featured with low-loss whispering gallery modes can emit directional lasing beam through a closely coupled on-chip waveguide efficiently, and hence is particularly suitable for photonics integration. The realization of electrically pumped III-nitride microdisk laser grown on Si has been impeded by the conventional undercut structure, poor material quality, and a limited quality of GaN microdisk formed by dry etching. Here we report a successful fabrication of room-temperature electrically pumped InGaN-based microdisk lasers grown on Si. A dramatic narrowing of the electroluminescence spectral line-width and a clear discontinuity in the slope of light output power plotted as a function of the injection current provide an unambiguous evidence of lasing. This is the first observation of electrically pumped lasing in InGaN-based microdisk lasers grown on Si at room temperature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
GaN-based ultraviolet microdisk laser diode grown on Si

Jin Wang, Meixin Feng, Rui Zhou, Qian Sun, Jianxun Liu, Yingnan Huang, Yu Zhou, Hongwei Gao, Xinhe Zheng, Masao Ikeda, and Hui Yang
Photon. Res. 7(6) B32-B35 (2019)

Electrically pumped InGaAs/GaAs quantum well microdisk lasers directly grown on Si(100) with Ge/GaAs buffer

N. V. Kryzhanovskaya, E. I. Moiseev, Yu. S. Polubavkina, M. V. Maximov, M. M. Kulagina, S. I. Troshkov, Yu. M. Zadiranov, A. A. Lipovskii, N. V. Baidus, A. A. Dubinov, Z. F. Krasilnik, A. V. Novikov, D. A. Pavlov, A. V. Rykov, A. A. Sushkov, D. V. Yurasov, and A. E. Zhukov
Opt. Express 25(14) 16754-16760 (2017)

Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si

Si Zhu, Bei Shi, Qiang Li, and Kei May Lau
Opt. Express 26(11) 14514-14523 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  3. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
    [Crossref]
  4. Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
    [Crossref]
  5. S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).
  6. A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
    [Crossref]
  7. Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
    [Crossref] [PubMed]
  8. P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
    [Crossref] [PubMed]
  9. X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
    [Crossref]
  10. Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22(1), 824–838 (2014).
    [Crossref] [PubMed]
  11. Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).
  12. M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).
  13. Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
    [Crossref] [PubMed]
  14. J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
    [Crossref]
  15. M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
    [Crossref] [PubMed]
  16. H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
    [Crossref]
  17. S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
    [Crossref]
  18. X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
    [Crossref]
  19. D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
    [Crossref]
  20. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
    [Crossref]
  21. S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
    [Crossref]
  22. Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
    [Crossref]
  23. B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
    [Crossref]
  24. Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
    [Crossref]
  25. D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. 61(22), 1723–1725 (2016).
    [Crossref]
  26. S. Nakamura, “The roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science 281(5379), 956–961 (1998).
    [Crossref] [PubMed]
  27. M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
    [Crossref]
  28. L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
    [Crossref]
  29. G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
    [Crossref]
  30. C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
    [Crossref]
  31. X. Zhang, Y. F. Cheung, Y. Zhang, and H. W. Choi, “Whispering-gallery mode lasing from optically free-standing InGaN microdisks,” Opt. Lett. 39(19), 5614–5617 (2014).
    [Crossref] [PubMed]
  32. A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
    [Crossref]
  33. X. Zhang, C. H. To, and H. W. Choi, “Optically-free-standing InGaN microdisks with metallic reflectors,” Jpn. J. Appl. Phys. 56(1S), 01AD04 (2017).
    [Crossref]
  34. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
    [Crossref]
  35. S. Nakamura, “InGaN/GaN/AlGaN-based laser diodes grown on epitaxially laterally overgrown GaN,” J. Mater. Res. 14(7), 2716–2731 (1999).
    [Crossref]

2017 (5)

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).

X. Zhang, C. H. To, and H. W. Choi, “Optically-free-standing InGaN microdisks with metallic reflectors,” Jpn. J. Appl. Phys. 56(1S), 01AD04 (2017).
[Crossref]

2016 (7)

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. 61(22), 1723–1725 (2016).
[Crossref]

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

2015 (3)

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
[Crossref] [PubMed]

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

2014 (4)

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22(1), 824–838 (2014).
[Crossref] [PubMed]

X. Zhang, Y. F. Cheung, Y. Zhang, and H. W. Choi, “Whispering-gallery mode lasing from optically free-standing InGaN microdisks,” Opt. Lett. 39(19), 5614–5617 (2014).
[Crossref] [PubMed]

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

2012 (2)

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

2011 (1)

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

2010 (1)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

2009 (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

2007 (2)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

2006 (1)

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

2004 (2)

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2001 (1)

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[Crossref]

1999 (1)

S. Nakamura, “InGaN/GaN/AlGaN-based laser diodes grown on epitaxially laterally overgrown GaN,” J. Mater. Res. 14(7), 2716–2731 (1999).
[Crossref]

1998 (1)

S. Nakamura, “The roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

1997 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Athanasiou, M.

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Borghs, G.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Boucaud, P.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Brimont, C.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Cao, H.

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

Chang, R. P. H.

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

Checoury, X.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Chen, D.

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Chen, L. Y.

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Chen, P.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Cheung, Y. F.

Chi, Y. C.

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Choi, H. W.

X. Zhang, C. H. To, and H. W. Choi, “Optically-free-standing InGaN microdisks with metallic reflectors,” Jpn. J. Appl. Phys. 56(1S), 01AD04 (2017).
[Crossref]

X. Zhang, Y. F. Cheung, Y. Zhang, and H. W. Choi, “Whispering-gallery mode lasing from optically free-standing InGaN microdisks,” Opt. Lett. 39(19), 5614–5617 (2014).
[Crossref] [PubMed]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Chua, S. J.

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Cohen, D. A.

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

Crepel, V.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Damilano, B.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Degroote, S.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

DenBaars, S. P.

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Derluyn, J.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Du, Y.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Einfeldt, S.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

El Kurdi, M.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Fang, W.

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

Farrell, R. M.

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

Feng, B.

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Feng, L.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Feng, M.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Feng, M. X.

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Flores, Y. V.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Fujimoto, T.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Gao, H.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Gao, X.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Gayral, B.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Geens, K.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Germain, M.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Goto, S.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Guillet, T.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Haberer, E. D.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

Han, J.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

Hashizu, T.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Ho, S. T.

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Hofmann, W.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Hove, M. V.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Hu, E. L.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

Huang, Y.

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Huang, Y. F.

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Huang, Y. Z.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22(1), 824–838 (2014).
[Crossref] [PubMed]

Hui, K. N.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Hwang, M. S.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Ikeda, M.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Ikeda, S.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Imafuji, O.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Jiang, Y.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Kang, J. H.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Kasahara, D.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).

Katayama, T.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Kim, Y. H.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Kneissl, M.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Kobayashi, N.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[Crossref]

Kuo, H. C.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Kwon, S. H.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Lai, P. T.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Lee, J. M.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Lee, K.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

Leroux, M.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Leung, B.

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

Leys, M.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Li, D.

D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. 61(22), 1723–1725 (2016).
[Crossref]

Li, D. Y.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Li, X.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Li, Y.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

Li, Z. C.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Lin, C. F.

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Lin, D. W.

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Lin, G. R.

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Lin, V. K. X.

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

Linke, A.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Litchinitser, N. M.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Liu, B.

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
[Crossref] [PubMed]

Liu, B. W.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Liu, J.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Liu, J. P.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Liu, S.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Liu, X.

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

Long, H.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Longhi, S.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Lv, X. M.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Martens, M.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Masui, S.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Mei, Y.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Mexis, M.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Miao, P.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Mizuno, T.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Nagahama, S.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Nakamura, S.

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

S. Nakamura, “InGaN/GaN/AlGaN-based laser diodes grown on epitaxially laterally overgrown GaN,” J. Mater. Res. 14(7), 2716–2731 (1999).
[Crossref]

S. Nakamura, “The roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Nakatsu, Y.

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).

Netzel, C.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Nguyen, A. P. D.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Nishida, T.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[Crossref]

Nozaki, S.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Ohfuji, Y.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Park, H. G.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Park, S. H.

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Park, W. I.

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Piprek, J.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Poon, A. W.

Pourhashemi, A.

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

Redaelli, L.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Rennesson, S.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Roland, I.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Saito, H.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[Crossref]

Sellés, J.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Semond, F.

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Sharma, R.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

Shi, Z.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Simoen, E.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Smith, R.

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
[Crossref] [PubMed]

Speck, J. S.

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Srivastava, P.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Stesmans, A.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Sun, J.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Sun, Y.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Takeya, M.

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Takigawa, S.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Tamboli, A. C.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

Tanaka, T.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Teng, J. H.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

To, C. H.

X. Zhang, C. H. To, and H. W. Choi, “Optically-free-standing InGaN microdisks with metallic reflectors,” Jpn. J. Appl. Phys. 56(1S), 01AD04 (2017).
[Crossref]

Tränkle, G.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Tripathy, S.

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Tsai, C. T.

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vicknesh, S.

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

Visalli, D.

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Walasik, W.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Wang, H.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Wang, J.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Wang, L. S.

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

Wang, T.

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
[Crossref] [PubMed]

Wang, Y.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Weng, G. E.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Wenzel, H.

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

Wu, T. C.

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

Wu, X. H.

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

Xiao, J. L.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Xiong, K.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

Xiong, W.

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

Yamanaka, K.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Yan, W.

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Yang, H.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Yang, Y.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Yang, Y. D.

Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22(1), 824–838 (2014).
[Crossref] [PubMed]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Ying, L. Y.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Yoshida, S.

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

Yuan, G.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

Yuan, J.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Zhang, B. P.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Zhang, C.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Zhang, J. Y.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Zhang, L. Q.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhang, S.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Zhang, S. M.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhang, X.

X. Zhang, C. H. To, and H. W. Choi, “Optically-free-standing InGaN microdisks with metallic reflectors,” Jpn. J. Appl. Phys. 56(1S), 01AD04 (2017).
[Crossref]

X. Zhang, Y. F. Cheung, Y. Zhang, and H. W. Choi, “Whispering-gallery mode lasing from optically free-standing InGaN microdisks,” Opt. Lett. 39(19), 5614–5617 (2014).
[Crossref] [PubMed]

Zhang, X. H.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

Zhang, Y.

Zhang, Z.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Zhao, H. M.

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Zhou, R.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Zhou, Y.

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Zhu, B.

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Zou, L. X.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

ACS Photonics (2)

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Appl. Phys. Express (1)

D. Visalli, M. V. Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, A. Stesmans, and G. Borghs, “Investigation of Light-Induced Deep-Level Defect Activation at the AlN/Si Interface,” Appl. Phys. Express 4(9), 094101 (2011).
[Crossref]

Appl. Phys. Lett. (7)

A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue laser diodes with indium tin oxide cladding on semipolar (20-21) GaN substrates,” Appl. Phys. Lett. 106(11), 111105 (2015).
[Crossref]

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
[Crossref]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109(23), 231101 (2016).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006).
[Crossref]

S. Vicknesh, S. Tripathy, V. K. X. Lin, L. S. Wang, and S. J. Chua, “Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms,” Appl. Phys. Lett. 90(7), 071906 (2007).
[Crossref]

X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on a silicon substrate,” Appl. Phys. Lett. 84(14), 2488–2490 (2004).
[Crossref]

J. Mater. Res. (1)

S. Nakamura, “InGaN/GaN/AlGaN-based laser diodes grown on epitaxially laterally overgrown GaN,” J. Mater. Res. 14(7), 2716–2731 (1999).
[Crossref]

J. Semicond. (1)

Q. Sun, W. Yan, M. X. Feng, Z. C. Li, B. Feng, H. M. Zhao, and H. Yang, “GaN-on-Si Blue/White LEDs: Epitaxy, Chip, and Package,” J. Semicond. 37(4), 044006 (2016).
[Crossref]

Jpn. J. Appl. Phys. (3)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-power, long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn. J. Appl. Phys. 36(8B), L1059–L1061 (1997).
[Crossref]

S. Nozaki, S. Yoshida, K. Yamanaka, O. Imafuji, S. Takigawa, T. Katayama, and T. Tanaka, “High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology,” Jpn. J. Appl. Phys. 55(4S), 04EH05 (2016).
[Crossref]

X. Zhang, C. H. To, and H. W. Choi, “Optically-free-standing InGaN microdisks with metallic reflectors,” Jpn. J. Appl. Phys. 56(1S), 01AD04 (2017).
[Crossref]

Light Sci. Appl. (1)

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2017).
[Crossref]

Nat. Commun. (1)

Y. H. Kim, S. H. Kwon, J. M. Lee, M. S. Hwang, J. H. Kang, W. I. Park, and H. G. Park, “Graphene-contact electrically driven microdisk lasers,” Nat. Commun. 3(1), 1123 (2012).
[Crossref] [PubMed]

Nat. Photonics (4)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. P. Liu, M. X. Feng, Z. C. Li, Y. Zhou, L. Q. Zhang, D. Y. Li, S. M. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

Y. Yang, B. Zhu, Z. Shi, J. Wang, X. Li, X. Gao, J. Yuan, Y. Li, Y. Jiang, and Y. Wang, “Multi-dimensional spatial light communication made with on-chip InGaN photonic integration,” Opt. Mater. 64(17), 160–165 (2017).

Phys. Status Solidi, C Conf. Crit. Rev. (1)

M. Ikeda, T. Mizuno, M. Takeya, S. Goto, S. Ikeda, T. Fujimoto, Y. Ohfuji, and T. Hashizu, “High-power GaN-based semiconductor lasers,” Phys. Status Solidi, C Conf. Crit. Rev. 1(6), 1461–1467 (2004).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

Proc. SPIE (2)

L. Redaelli, M. Martens, J. Piprek, H. Wenzel, C. Netzel, A. Linke, Y. V. Flores, S. Einfeldt, M. Kneissl, and G. Tränkle, “Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes,” Proc. SPIE 8262, 826219 (2012).
[Crossref]

S. Masui, Y. Nakatsu, D. Kasahara, and S. Nagahama, “Recent Improvement in Nitride Lasers,” Proc. SPIE 10104, 101041H (2017).

Sci. Bull. (1)

D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. 61(22), 1723–1725 (2016).
[Crossref]

Sci. Rep. (2)

Y. C. Chi, Y. F. Huang, T. C. Wu, C. T. Tsai, L. Y. Chen, H. C. Kuo, and G. R. Lin, “Violet Laser Diode Enables Lighting Communication,” Sci. Rep. 7(1), 10469 (2017).
[Crossref] [PubMed]

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4(1), 7250 (2015).
[Crossref] [PubMed]

Science (2)

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

S. Nakamura, “The roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science 281(5379), 956–961 (1998).
[Crossref] [PubMed]

Other (1)

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Wang, and H. Yang, “On-chip integration of GaN-based laser, modulator, and photodetector grown on Si”. (in review).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic architectures of the reported ‘mushroom-like’ InGaN-based microdisk laser on Si with an undercut structure (a) and a ‘sandwich-like’ InGaN microring laser grown on Si with AlGaN cladding layers (b). (c) The detailed schematic structure of InGaN microring laser grown on Si with AlGaN cladding layers. R and r are the radiuses of the outer and inner circles, respectively. The 5.8-μm-thick laser epitaxial structure consisted of a 370-nm-thick AlN nucleation layer, Al composition step-graded AlGaN multi-layers consisting of a 280-nm-thick Al0.35Ga0.65N layer and a 415-nm-thick Al0.17Ga0.83N layer, a 1-μm-thick undoped GaN layer, a 1.6-μm-thick n-type GaN layer, a 1.3-μm-thick n-type Al0.07Ga0.93N cladding layer, a 80-nm-thick n-type GaN lower waveguide layer, three pairs of 2.5-nm-thick undoped In0.1Ga0.9N quantum wells (QWs) and 7.5-nm-thick undoped In0.02Ga0.98N quantum barrier layers, a 60-nm-thick undoped GaN upper waveguide layer, a 20-nm-thick p-type Al0.2Ga0.8N electron blocking layer (EBL), 100 pairs of 3-nm-thick p-type Al0.11Ga0.89N and 3-nm-thick p-type GaN superlattice (SL) cladding layers, and a 30-nm-thick p-type GaN contact layer. The device was fabricated in a co-planar structure, with both p- and n-contact pads at the same side. (d) Scanning electron microscope image of one as-fabricated InGaN microring laser grown on Si (R = 20 μm and r = 10 μm). (e) Cross-sectional high-angle annular dark-field scanning transmission electron microscope (STEM) image of an InGaN-based microdisk laser structure grown on Si. The total thickness of the entire epitaxial structure was 5.8 μm. (f) Panchromatic cathodoluminescence image of the GaN film grown on Si. The density of threading dislocations (TDs) in the GaN film represented by the dark spots was about 6 × 108 cm−2.
Fig. 2
Fig. 2 (a), (b), SEM images of microdisk sidewall before (a) and after (b) TMAH wet etching. (c) Threshold currents of InGaN-based microring lasers grown on Si (R = 100 μm and r = 90 μm) before and after the TMAH wet etching treatment.
Fig. 3
Fig. 3 (a) EL spectra of an as-fabricated InGaN-based microring laser grown on Si (R = 20 μm and r = 10 μm) measured under various pulsed currents. The inset showed a top-view emission pattern of the device at a pulsed injection current of 200 mA (below the lasing threshold), and the scale bar was 10 μm. The left-side segment of the circular emission pattern was blocked by the electrical probe. (b) FWHM of the EL spectra as a function of the pulsed injection current. (c) EL light output power as a function of the injection current. Only part of the light output was collected from the edge of the microring laser under a pulsed injection current at room temperature. The electrical pumping pulse width was 400 ns, and the repetition rate 10 kHz.
Fig. 4
Fig. 4 The threshold current distribution of 30 microring lasers grown on Si (R = 20 μm and r = 10 μm). All the measurements were taken under a pulsed injection current at room temperature. The electrical pumping pulse width was 400 ns and the repetition rate 10 kHz.
Fig. 5
Fig. 5 Peak light output power of InGaN-based microring laser (R = 50 μm and r = 40 μm) and microdisk laser (R = 50 μm and r = 0 μm) grown on Si measured under various pulsed currents at room temperature. The electrical pumping pulse width was 400 ns, and the repetition rate 10 kHz.
Fig. 6
Fig. 6 The optical field distribution of the as-fabricated ‘sandwich-like’ InGaN-based microring laser grown on Si with AlGaN CLs.

Metrics