Abstract

In this paper, a theoretical investigation of the performance of a communication scenario where a geostationary-orbit satellite provides radio-frequency broadband access to the users through orthogonal-frequency-division multiplexing technology and has an optical feeder link is presented. The interface between the radio frequency and the optical parts is achieved by using radio-on-fiber technology for optical-electro and electro-optical conversion onboard and no further signal processing is required. The proposed scheme has significant potential, but presents limitations related to the noise. The noise in both forward and reverse links is described, and the system performance for an example scenario with 1280 MHz bandwidth for QPSK, 16QAM, and 64QAM subcarrier modulation is estimated. The obtained results show that under certain conditions regarding link budget and components choice, the proposed solution is feasible.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 40  GBaud intradyne transmission through worst-case atmospheric turbulence conditions for geostationary satellite uplink

Philip Conroy, Janis Surof, Juraj Poliak, and Ramon Mata Calvo
Appl. Opt. 57(18) 5095-5101 (2018)

M-QAM transmission over hybrid microwave photonic links at the K-band

Dong-Nhat Nguyen, Jan Bohata, Jan Spacil, Daniel Dousek, Matej Komanec, Stanislav Zvanovec, Zabih Ghassemlooy, and Beatriz Ortega
Opt. Express 27(23) 33745-33756 (2019)

Studies on characterizing the transmission of RF signals over a turbulent FSO link

Pham Tien Dat, Abdemoula Bekkali, Kamugisha Kazaura, Kazuhiko Wakamori, Toshiji Suzuki, Mitsuji Matsumoto, Takeshi Higashino, Katsutoshi Tsukamoto, and Shozo Komaki
Opt. Express 17(10) 7731-7743 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
    [Crossref]
  2. B. V. Oaida, M. J. Abrahamson, R. J. Witoff, J. N. B. Martinez, and D. A. Zayas, “OPALS: An optical communications technology demonstration from the International Space Station,” 2013 IEEE Aerospace Conference (2013), pp.1–20.
  3. D. Giggenbach, J. Horwath, and B. Epple, “Optical Satellite Downlinks to Optical Ground Stations and High-Altitude Platforms,” 16th IST Mobile and Wireless Communications Summit (2007), pp. 1–4.
  4. Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
    [Crossref]
  5. F. Heine, H. Kämpfner, R. Czichy, R. Meyer, and M. Lutzer, “Optical inter-satellite communication operational,” 2010 Military Communications Conference (2010), pp. 1583–1587.
  6. K. Suzuki, M. Yahata, M. Kato, T. Watanabe, K. Hoshi, T. Okui, S. Yoshikawa, M. Yoneda, Y. Arakawa, T. Asai, T. Takahashi, and M. Toyoshima, “16APSK/16QAM-OFDM 3.2Gbps RF Signal Direct-Processing Transmitter and Receiver Communication Experiment Using WINDS Satellite,” IEICE Technical Report SAT2015–40 (2015–10), pp. 137–140.
  7. B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
    [Crossref]
  8. S. Dimitrov, B. Matuz, G. Liva, R. Barrios, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links,” 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC) (2014), pp. 150–157.
    [Crossref]
  9. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE Press, 2005).
  10. P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, “A universal platform for ubiquitous wireless communications using radio over FSO system,” J. Lightwave Technol. 28(16), 2258–2267 (2010).
    [Crossref]
  11. C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
    [Crossref]
  12. M. W. Wright, J. F. Morris, J. M. Kovalik, K. S. Andrews, M. J. Abrahamson, and A. Biswas, “Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink,” Opt. Express 23(26), 33705–33712 (2015).
    [Crossref] [PubMed]
  13. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
    [Crossref] [PubMed]
  14. W. Rosenkranz, A. Ali, and J. Leibrich, “Design considerations and performance comparison of high-order modulation formats using OFDM,” 2010 12th International Conference on Transparent Optical Networks, (2010), pp. 1–4.
    [Crossref]
  15. D. R. Kolev, K. Wakamori, and M. Matsumoto, “Transmission Analysis of OFDM-Based Services Over Line-of-Sight Indoor Infrared Laser Wireless Links,” J. Lightwave Technol. 30(3), 3727–3735 (2012).
    [Crossref]
  16. A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-basedwireless services over turbulent radio-on-FSO links modeled by gamma-gammadistribution,” IEEE Photonics J. 2(3), 510–520 (2010).
    [Crossref]
  17. H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).
  18. R. J. Westcott, “Investigation of multiple f.m./f.d.m. carriers through a satellite t.w.t. operating near to saturation,” Proc. Inst. Electr. Eng. 114(6), 726–740 (1967).
    [Crossref]
  19. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).
  20. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000).
    [Crossref]
  21. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30(15), 1982–1994 (1991).
    [Crossref] [PubMed]
  22. J. Li, Y.-C. Zhang, S. Yu, T. Jiang, Q. Xie, and W. Gu, “Intermodulation distortion elimination for analog photonics link based on integrated dual-parallel Mach-Zehnder modulator,” in CLEO 2014 (2014).
  23. R. J. Alliss and B. Felton. “Realtime atmospheric decision aids in support of the lunar laser communications demonstration,” in Proceedings of the International Conference on Space Optical Systems and Applications (ICSOS, 2014).

2016 (1)

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

2015 (1)

2012 (1)

2010 (2)

A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-basedwireless services over turbulent radio-on-FSO links modeled by gamma-gammadistribution,” IEEE Photonics J. 2(3), 510–520 (2010).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, “A universal platform for ubiquitous wireless communications using radio over FSO system,” J. Lightwave Technol. 28(16), 2258–2267 (2010).
[Crossref]

2005 (1)

2000 (1)

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000).
[Crossref]

1991 (1)

1967 (1)

R. J. Westcott, “Investigation of multiple f.m./f.d.m. carriers through a satellite t.w.t. operating near to saturation,” Proc. Inst. Electr. Eng. 114(6), 726–740 (1967).
[Crossref]

Abrahamson, M. J.

Andrews, K. S.

Arai, K.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Artaud, G.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Baney, D. M.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000).
[Crossref]

Barrios, R.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Bekkali, A.

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, “A universal platform for ubiquitous wireless communications using radio over FSO system,” J. Lightwave Technol. 28(16), 2258–2267 (2010).
[Crossref]

A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-basedwireless services over turbulent radio-on-FSO links modeled by gamma-gammadistribution,” IEEE Photonics J. 2(3), 510–520 (2010).
[Crossref]

Biswas, A.

Churnside, J. H.

Dat, P. T.

Davidson, F. M.

Dikmelik, Y.

Dimitrov, S.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Gallion, P.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000).
[Crossref]

Giggenbach, D.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Jono, T.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Kawamoto, O.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

Kazaura, K.

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto, “A universal platform for ubiquitous wireless communications using radio over FSO system,” J. Lightwave Technol. 28(16), 2258–2267 (2010).
[Crossref]

A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-basedwireless services over turbulent radio-on-FSO links modeled by gamma-gammadistribution,” IEEE Photonics J. 2(3), 510–520 (2010).
[Crossref]

Kernec, A. L.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Klaus, W.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Kolev, D. R.

Kovalik, J. M.

Koyama, Y.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

Kunimori, H.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Kuri, T.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Mase, I.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

Matsumoto, M.

Michau, V.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Mokuno, M.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Morris, J. F.

Naila, C. B.

A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-basedwireless services over turbulent radio-on-FSO links modeled by gamma-gammadistribution,” IEEE Photonics J. 2(3), 510–520 (2010).
[Crossref]

Petit, C.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Poulenard, S.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Roy, B.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Samain, E.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Shiratama, K.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

Sotom, M.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

Takayama, Y.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Takenaka, H.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

Takizawa, K.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Toyoda, M.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Toyoshima, M.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

Tucker, R. S.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000).
[Crossref]

Védrenne, N.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Velluet, M.

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Wakamori, K.

Westcott, R. J.

R. J. Westcott, “Investigation of multiple f.m./f.d.m. carriers through a satellite t.w.t. operating near to saturation,” Proc. Inst. Electr. Eng. 114(6), 726–740 (1967).
[Crossref]

Wright, M. W.

Appl. Opt. (2)

IEEE Photonics J. (1)

A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-basedwireless services over turbulent radio-on-FSO links modeled by gamma-gammadistribution,” IEEE Photonics J. 2(3), 510–520 (2010).
[Crossref]

J. Lightwave Technol. (2)

Opt. Eng. (1)

C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E. Samain, and M. Toyoshima, “Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder,” Opt. Eng. 55(11), 111611 (2016).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6(2), 122–154 (2000).
[Crossref]

Proc. Inst. Electr. Eng. (1)

R. J. Westcott, “Investigation of multiple f.m./f.d.m. carriers through a satellite t.w.t. operating near to saturation,” Proc. Inst. Electr. Eng. 114(6), 726–740 (1967).
[Crossref]

Other (14)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).

W. Rosenkranz, A. Ali, and J. Leibrich, “Design considerations and performance comparison of high-order modulation formats using OFDM,” 2010 12th International Conference on Transparent Optical Networks, (2010), pp. 1–4.
[Crossref]

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, M. Mokuno, and K. Arai, “Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite,” 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (2006), pp.80–81.
[Crossref]

B. V. Oaida, M. J. Abrahamson, R. J. Witoff, J. N. B. Martinez, and D. A. Zayas, “OPALS: An optical communications technology demonstration from the International Space Station,” 2013 IEEE Aerospace Conference (2013), pp.1–20.

D. Giggenbach, J. Horwath, and B. Epple, “Optical Satellite Downlinks to Optical Ground Stations and High-Altitude Platforms,” 16th IST Mobile and Wireless Communications Summit (2007), pp. 1–4.

Y. Koyama, M. Toyoshima, Y. Takayama, H. Takenaka, K. Shiratama, I. Mase, and O. Kawamoto, “SOTA: Small Optical Transponder for micro-satellite,” 2011 International Conference on Space Optical Systems and Applications (2011), pp. 97–101.
[Crossref]

F. Heine, H. Kämpfner, R. Czichy, R. Meyer, and M. Lutzer, “Optical inter-satellite communication operational,” 2010 Military Communications Conference (2010), pp. 1583–1587.

K. Suzuki, M. Yahata, M. Kato, T. Watanabe, K. Hoshi, T. Okui, S. Yoshikawa, M. Yoneda, Y. Arakawa, T. Asai, T. Takahashi, and M. Toyoshima, “16APSK/16QAM-OFDM 3.2Gbps RF Signal Direct-Processing Transmitter and Receiver Communication Experiment Using WINDS Satellite,” IEICE Technical Report SAT2015–40 (2015–10), pp. 137–140.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” 2015 IEEE International Conference on Space Optical Systems and Applications (2015), pp. 1–6.
[Crossref]

S. Dimitrov, B. Matuz, G. Liva, R. Barrios, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links,” 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC) (2014), pp. 150–157.
[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE Press, 2005).

J. Li, Y.-C. Zhang, S. Yu, T. Jiang, Q. Xie, and W. Gu, “Intermodulation distortion elimination for analog photonics link based on integrated dual-parallel Mach-Zehnder modulator,” in CLEO 2014 (2014).

R. J. Alliss and B. Felton. “Realtime atmospheric decision aids in support of the lunar laser communications demonstration,” in Proceedings of the International Conference on Space Optical Systems and Applications (ICSOS, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 High-throughput satellite with optical feeder link.
Fig. 2
Fig. 2 Forward link block scheme.
Fig. 3
Fig. 3 Reverse link block scheme.
Fig. 4
Fig. 4 CNDR vs OMI and received optical power for forward link (a) and reverse link (b).
Fig. 5
Fig. 5 CNDR vs Rx. Power for optimal OMI for four cases –direct intensity modulation of an LD with and without fiber coupling and different RIN noise and improved modulation with MZM for both forward link (a) and reverse link (b).
Fig. 6
Fig. 6 BEP vs CNDR for QPSK (a), 16QAM (b), and 64QAM (c) signal without turbulence to strong turbulence conditions.

Tables (5)

Tables Icon

Table 1 Link Budget for the Uplink and the Downlink of the Optical Channel

Tables Icon

Table 2 List of Considered Modulation Types, Coding Rates and Data Rates

Tables Icon

Table 3 Analysis Parameters

Tables Icon

Table 4 Number of Channels Analysis

Tables Icon

Table 5 Achieved CNDR for the Different Scenarios

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

p MZM (t)= p t ( 1+ n=0 N1 m n s n (t) + a 3 [ n=0 N1 m n s n (t) ] 3 ).
p ORX = p OTX g OTX l OLink l geom g ORX l ORX l scint g add g OA,Sat X+ n FSO (t).
σ IMD 2 =0.5 (0.75 a 3 m n 3 D 2 +1.5 a 3 m n 3 D 3 ) 2 I ORX 2 . I ORX =ρ P ORX
D 3 | n n=N/2 =0.75 N 2 D 3 | n n=1,N =0.25 N 2 .
C=0.5 m 2 I ORX 2 .
N tot,Opt = 4 K B T abs R L +2q I ORX T s +( (RIN) I ORX 2 T s + σ IMD 2 )n f TXOA n f RXOA .
N tot,FWD = N tot,Opt n f TXLNA n f RXLNA .
N tot,RVS =( 4 K B T abs R L T s n f TXLNA n f RXLNA + (RIN) I ORX 2 T s + σ IMD 2 )n f TXOA n f RXOA + 2q I ORX T s .
P s,n (X)=2(1 1 M )erfc( 3 2(M1) CND R n (X) ).
PD F ΓΓ (x)= 2 (αβ) α+β 2 Γ(α)Γ(β) x α+β 2 1 K αβ (2 αβx ).
α= [ exp{ 0.49 σ R 2 ( 1+1.11 σ R 12/5 ) 7/6 }1 ] 1 β= [ exp{ 0.51 σ R 2 ( 1+0.69 σ R 12/5 ) 5/6 }1 ] 1 .
P s,n =( 1 1 M ) 2 α+β1 π π Γ(α)Γ(β) G 5,2 2,4 ( 2 3 3CNDR 2( M1 ) (αβ) 2 | 1α 2 , 2α 2 , 1β 2 , 2β 2 ,1 0,0.5 ).
P b,n = 1 ln( M ) P s,n .
P b = 1 N n=0 N1 P b,n .

Metrics