Abstract

We propose and implement a hardware-efficient frequency offset estimator (FOE) optimized for 16- and 32-QAM coherent optical receivers with low hardware cost and high estimation accuracy. The proposed FOE combines a wide-range coarse estimator and a narrow-range highly accurate estimator in a feedforward architecture. We numerically and experimentally investigate the performance of the proposed estimator by using a field-programmable-logic-array (FPGA) based real-time coherent receiver. Compared with other state-of-the-art estimators in literature, the proposed method reduces over 40% of hardware utilizations while maintaining the same level of estimation accuracy in terms of mean-squared-error (MSE) and optical signal-to-noise ratio (OSNR) sensitivity. These results enable the development of next generation DSP circuit capable of supporting high capacity coherent optical communication link with advanced modulation formats.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Feed-forward frequency offset estimation for 32-QAM optical coherent detection

Fei Xiao, Jianing Lu, Songnian Fu, Chenhui Xie, Ming Tang, Jinwen Tian, and Deming Liu
Opt. Express 25(8) 8828-8839 (2017)

Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver

Jianing Lu, Xiang Li, Songnian Fu, Ming Luo, Meng Xiang, Huibin Zhou, Ming Tang, and Deming Liu
Opt. Express 25(5) 5217-5231 (2017)

Simple feed-forward wide-range frequency offset estimator for optical coherent receivers

J. C. M. Diniz, J. C. R. F. de Oliveira, E. S. Rosa, V. B. Ribeiro, V. E. S. Parahyba, R. da Silva, E. P. da Silva, L. H. H. de Carvalho, A. F. Herbster, and A. C. Bordonalli
Opt. Express 19(26) B323-B328 (2011)

References

  • View by:
  • |
  • |
  • |

  1. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
    [Crossref]
  2. M. Faruk and S. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
    [Crossref]
  3. M. Kuschnerov, “Digital coherent transceivers: from algorithm design to economics,” in Proc. Opt. Fiber Commun. Cof. Exhibit, paper M2C.5 (2017).
  4. I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical system using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
    [Crossref]
  5. M. Li, J. Zhao, and L. Chen, “Multisymbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals,” IEEE Photonics Technol. Lett. 27(1), 18–21 (2015).
    [Crossref]
  6. J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
    [Crossref]
  7. F. Xiao, J. Lu, S. Fu, C. Xie, M. Tang, J. Tian, and D. Liu, “Feed-forward frequency offset estimation for 32-QAM optical coherent detection,” Opt. Express 25(8), 8828–8839 (2017).
    [Crossref] [PubMed]
  8. J. Jignesh, B. Corcoran, and A. Lowery, “Parallelized unscented Kalman filters for carrier recovery in coherent optical communication,” Opt. Lett. 41(14), 3253–3256 (2016).
    [Crossref] [PubMed]
  9. L. Li, Y. Feng, W. Zhang, N. Cui, H. Xu, X. Tang, L. Xi, and X. Zhang, “Extended Kalman filter for carrier frequency offset and carrier phase noise,” in Conference of Laser and Electro-optics, paper Stu3M.7 (2017).
  10. B. Baeuerle, A. Josten, F. Abrecht, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “Multi-format carrier recovery for coherent real-time reception with processing in polar coordinates,” Opt. Express 24(22), 25629–25640 (2016).
    [Crossref] [PubMed]
  11. J. Lu, X. Li, S. Fu, M. Luo, M. Xiang, H. Zhou, M. Tang, and D. Liu, “Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver,” Opt. Express 25(5), 5217–5231 (2017).
    [Crossref] [PubMed]
  12. J. Lu, Y. Tian, S. Fu, X. Li, M. Luo, M. Tang, and D. Liu, “Frequency offset estimation for 32-QAM based on constellation rotation,” IEEE Photonics Technol. Lett. 29(23), 2115–2118 (2017).
    [Crossref]
  13. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  14. J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electron. Comput. EC-8(3), 330–334 (1959).
    [Crossref]

2017 (4)

2016 (2)

2015 (2)

M. Li, J. Zhao, and L. Chen, “Multisymbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals,” IEEE Photonics Technol. Lett. 27(1), 18–21 (2015).
[Crossref]

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

2012 (1)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

2010 (1)

I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical system using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

2009 (1)

1959 (1)

J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electron. Comput. EC-8(3), 330–334 (1959).
[Crossref]

Abrecht, F.

Baeuerle, B.

Chen, L.

M. Li, J. Zhao, and L. Chen, “Multisymbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals,” IEEE Photonics Technol. Lett. 27(1), 18–21 (2015).
[Crossref]

Corcoran, B.

Dornbierer, E.

Eppenberger, M.

Faruk, M.

Fatadin, I.

I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical system using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

Feng, J.

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

Fu, S.

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Han, J.

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

Hillerkuss, D.

Hoffmann, S.

Ives, D.

I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical system using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

Jignesh, J.

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Josten, A.

Leuthold, J.

Li, M.

M. Li, J. Zhao, and L. Chen, “Multisymbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals,” IEEE Photonics Technol. Lett. 27(1), 18–21 (2015).
[Crossref]

Li, W.

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

Li, X.

J. Lu, Y. Tian, S. Fu, X. Li, M. Luo, M. Tang, and D. Liu, “Frequency offset estimation for 32-QAM based on constellation rotation,” IEEE Photonics Technol. Lett. 29(23), 2115–2118 (2017).
[Crossref]

J. Lu, X. Li, S. Fu, M. Luo, M. Xiang, H. Zhou, M. Tang, and D. Liu, “Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver,” Opt. Express 25(5), 5217–5231 (2017).
[Crossref] [PubMed]

Liu, D.

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Lowery, A.

Lu, J.

Luo, M.

J. Lu, X. Li, S. Fu, M. Luo, M. Xiang, H. Zhou, M. Tang, and D. Liu, “Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver,” Opt. Express 25(5), 5217–5231 (2017).
[Crossref] [PubMed]

J. Lu, Y. Tian, S. Fu, X. Li, M. Luo, M. Tang, and D. Liu, “Frequency offset estimation for 32-QAM based on constellation rotation,” IEEE Photonics Technol. Lett. 29(23), 2115–2118 (2017).
[Crossref]

Noe, R.

Pfau, T.

Savory, S.

M. Faruk and S. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightwave Technol. 35(5), 1125–1141 (2017).
[Crossref]

I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical system using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

Tang, M.

Tian, J.

Tian, Y.

J. Lu, Y. Tian, S. Fu, X. Li, M. Luo, M. Tang, and D. Liu, “Frequency offset estimation for 32-QAM based on constellation rotation,” IEEE Photonics Technol. Lett. 29(23), 2115–2118 (2017).
[Crossref]

Volder, J. E.

J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electron. Comput. EC-8(3), 330–334 (1959).
[Crossref]

Xiang, M.

Xiao, F.

Xiao, J.

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

Xie, C.

Yang, Q.

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Yu, S.

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

Zhao, J.

M. Li, J. Zhao, and L. Chen, “Multisymbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals,” IEEE Photonics Technol. Lett. 27(1), 18–21 (2015).
[Crossref]

Zhou, H.

IEEE Commun. Mag. (1)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical system using QPSK partitioning,” IEEE Photonics Technol. Lett. 22(9), 631–633 (2010).
[Crossref]

M. Li, J. Zhao, and L. Chen, “Multisymbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals,” IEEE Photonics Technol. Lett. 27(1), 18–21 (2015).
[Crossref]

J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estimation with multi-steps interpolation for coherent optical systems,” IEEE Photonics Technol. Lett. 27(19), 2011–2014 (2015).
[Crossref]

J. Lu, Y. Tian, S. Fu, X. Li, M. Luo, M. Tang, and D. Liu, “Frequency offset estimation for 32-QAM based on constellation rotation,” IEEE Photonics Technol. Lett. 29(23), 2115–2118 (2017).
[Crossref]

IRE Trans. Electron. Comput. (1)

J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electron. Comput. EC-8(3), 330–334 (1959).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (1)

Other (2)

L. Li, Y. Feng, W. Zhang, N. Cui, H. Xu, X. Tang, L. Xi, and X. Zhang, “Extended Kalman filter for carrier frequency offset and carrier phase noise,” in Conference of Laser and Electro-optics, paper Stu3M.7 (2017).

M. Kuschnerov, “Digital coherent transceivers: from algorithm design to economics,” in Proc. Opt. Fiber Commun. Cof. Exhibit, paper M2C.5 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Constellation partitioning and PSK approximation for 32-QAM.
Fig. 2
Fig. 2 (a) Conceptual block diagram of the proposed feedforward frequency offset estimator. N = 5 for 32-QAM and N = 3 for 16-QAM. (b) Algorithm utilized by the LUT-based range finder.
Fig. 3
Fig. 3 MSE versus frequency offset for (a) 16-QAM and (b) 32-QAM.
Fig. 4
Fig. 4 MSE versus the number of symbols for (a) 16-QAM and (b) 32-QAM.
Fig. 5
Fig. 5 MSE versus OSNR for (a) 16-QAM and (b) 32-QAM.
Fig. 6
Fig. 6 (a) Experimental setup for 10 Gbaud 16-QAM system. BPF: optical band-pass filter. PC: polarization controller. EDFA: erbium-doped fiber amplifier. VOA: variable optical attenuator. ADC: analog to digital converter. (b) DSP flow for processing the received signal.
Fig. 7
Fig. 7 Real-time implementation block diagram of the proposed FOE. MUX: multiplexer.
Fig. 8
Fig. 8 (a) BER versus OSNR performance of 10 Gbaud 16-QAM signal processed by different FOEs. (b) Floorplan of the DSPs on the FPGA. Pink: adaptive equalizer. Blue: proposed FOE. Green: CPE. Yellow: Memory and IO driver.

Tables (1)

Tables Icon

Table 1 FPGA resource utilization (% of Xilinx xc7vx690t)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X k = A k e j ( ω c k T s + φ k + θ k ) + N k = A k ' e j ( ω c k T s + φ k + θ k + n k )
δ k , n = { 0 ° , X k C l a s s I , n = 0 ± ( arc tan ( 1 3 ) π 8 ) = ± 4.07 ° , X k C l a s s I I , n = 1 ± ( arc tan ( 1 5 ) π 16 ) = ± 0.06 ° , X k C l a s s I I I , n = 2 ± ( arc tan ( 3 5 ) 3 π 16 ) = ± 2.79 ° , X k C l a s s I I I , n = 3
( X k ' ) 16 = e 16 j ( T s k ω c + δ k + φ k + n k )
Δ f 1 , k = 1 32 π T s arg k k + L ( X k ' X k 1 ' ) 16 = 1 32 π T s arg k k + L e 16 j ( T s ω c + ( δ k δ k 1 ) + ( φ k φ k 1 ) + ( n k n k 1 ) )

Metrics