Abstract

While the nanowire (NW) lasers have attracted much attentions as nanoscale coherent sources in recent years, the heat accumulation and temperature-rise-induced breakdown remain challenges to improving the lasers for practical applications. Here we propose a microscale liquid-cooled approach to address the issue. Calculated results show that, compared with conventional air-cooled lasing systems, liquid-cooled NW lasers can allow much higher thermal power. By keeping the NW temperature below 373 K, the allowed thermal power in water is about 21 times that in air (850 µW in water versus 40 µW in air). Transient temperature evolution reveals a much faster heat dissipation of the NW in water (30 ns) than in air (7 µs), indicating a much higher allowable repetition rate in water than in air (e.g., 10 MHz versus 100 kHz). Our results suggest a possible route to compact NW lasers with higher power, new materials and new operation modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator

Zhibin Ye, Chong Liu, Bo Tu, Ke Wang, Qingsong Gao, Chun Tang, and Zhen Cai
Opt. Express 24(2) 1758-1772 (2016)

9 kilowatt-level direct-liquid-cooled Nd:YAG multi-module QCW laser

Jiayu Yi, Bo Tu, Xiangchao An, Xu Ruan, Jing Wu, Hua Su, Jianli Shang, Yi Yu, Yuan Liao, Haixia Cao, Lingling Cui, Qingsong Gao, and Kai Zhang
Opt. Express 26(11) 13915-13926 (2018)

3kW liquid–cooled elastically-supported Nd:YAG multi-slab CW laser resonator

Xing Fu, Peilin Li, Qiang Liu, and Mali Gong
Opt. Express 22(15) 18421-18432 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(2), 99–108 (2007).
    [Crossref]
  2. P. D. Yang, R. X. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
    [Crossref] [PubMed]
  3. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).
  4. M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
    [Crossref]
  5. Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
    [Crossref]
  6. S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
    [Crossref]
  7. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  8. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
    [Crossref] [PubMed]
  9. H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
    [Crossref]
  10. J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
    [Crossref]
  11. Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
    [Crossref] [PubMed]
  12. B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
    [Crossref] [PubMed]
  13. B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
    [Crossref] [PubMed]
  14. K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
    [Crossref]
  15. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
    [Crossref]
  16. J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
    [Crossref]
  17. R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
    [Crossref] [PubMed]
  18. W. Koechner, Solid State Laser Engineering (Springer, 1976).
    [Crossref]
  19. R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
    [Crossref] [PubMed]
  20. B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
    [Crossref]
  21. Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
    [Crossref] [PubMed]
  22. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2014).
  23. P. B. Roder, P. J. Pauzauskie, and E. J. Davis, “Nanowire heating by optical electromagnetic irradiation,” Langmuir 28(46), 16177–16185 (2012).
    [Crossref] [PubMed]
  24. T. M. Bieniewski and S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am. 53(4), 496–497 (1963).
    [Crossref]
  25. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-Îijm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  26. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  27. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
    [Crossref]
  28. A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29(6), 572–574 (2004).
    [Crossref] [PubMed]
  29. S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
    [Crossref] [PubMed]
  30. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
    [Crossref] [PubMed]
  31. M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
    [Crossref]
  32. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref]
  33. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University, 2005).
    [Crossref]
  34. J. Holman, Heat Transfer (McGraw-Hill, 1989).
  35. S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
    [Crossref] [PubMed]
  36. J. K. Dongre, V. Nogriya, and M. Ramrakhiani, “Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching,” Appl. Surf. Sci. 255(12), 6115–6120 (2009).
    [Crossref]
  37. Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
    [Crossref]
  38. M. Zapf, C. Ronning, and R. Röder, “High temperature limit of semiconductor nanowire lasers,” Appl. Phys. Lett. 110(17), 173103 (2017).
    [Crossref]
  39. Y. Y. Wu and P. D. Yang, “Melting and welding semiconductor nanowires in nanotubes,” Adv. Mater. 13(7), 520–523 (2001).
    [Crossref]
  40. T. Bergman and F. Incropera, Introduction to Heat Transfer (Wiley, 2011).
  41. B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
    [Crossref]

2017 (2)

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

M. Zapf, C. Ronning, and R. Röder, “High temperature limit of semiconductor nanowire lasers,” Appl. Phys. Lett. 110(17), 173103 (2017).
[Crossref]

2016 (2)

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

2015 (2)

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

2014 (1)

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

2013 (5)

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

2012 (4)

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

P. B. Roder, P. J. Pauzauskie, and E. J. Davis, “Nanowire heating by optical electromagnetic irradiation,” Langmuir 28(46), 16177–16185 (2012).
[Crossref] [PubMed]

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

2010 (3)

P. D. Yang, R. X. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
[Crossref]

2009 (3)

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

J. K. Dongre, V. Nogriya, and M. Ramrakhiani, “Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching,” Appl. Surf. Sci. 255(12), 6115–6120 (2009).
[Crossref]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

2008 (1)

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

2007 (1)

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(2), 99–108 (2007).
[Crossref]

2005 (2)

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[Crossref]

2004 (2)

2003 (2)

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

2001 (1)

Y. Y. Wu and P. D. Yang, “Melting and welding semiconductor nanowires in nanotubes,” Adv. Mater. 13(7), 520–523 (2001).
[Crossref]

1997 (1)

1973 (1)

1963 (1)

Abstreiter, G.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Agarwal, R.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Balakrishnan, G.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Bao, J. M.

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Barrelet, C. J.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Bergman, T.

T. Bergman and F. Incropera, Introduction to Heat Transfer (Wiley, 2011).

Bieniewski, T. M.

Bimberg, D.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Borschel, C.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Brener, I.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Buschlinger, R.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

Capasso, F.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Chen, B. G.

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

Chen, R.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Cho, C. H.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Christiansen, S.

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

Cross, K.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Czyzak, S. J.

Dai, D. X.

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

Dai, L.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Davis, E. J.

P. B. Roder, P. J. Pauzauskie, and E. J. Davis, “Nanowire heating by optical electromagnetic irradiation,” Langmuir 28(46), 16177–16185 (2012).
[Crossref] [PubMed]

Diaz, J. O.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Ding, K.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Dongre, J. K.

J. K. Dongre, V. Nogriya, and M. Ramrakhiani, “Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching,” Appl. Surf. Sci. 255(12), 6115–6120 (2009).
[Crossref]

Duan, X.

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[Crossref]

Eaton, S. W.

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

Eisenberg, D.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University, 2005).
[Crossref]

Fang, Q.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Fang, W.

Fardy, M.

P. D. Yang, R. X. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

Figiel, J. J.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Finley, J. J.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Fry, E. S.

Fu, A.

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Geburt, S.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Gu, F. X.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Guo, X.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Hale, G. M.

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2014).

Holman, J.

J. Holman, Heat Transfer (McGraw-Hill, 1989).

Hu, Z. F.

Huang, Y.

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[Crossref]

Incropera, F.

T. Bergman and F. Incropera, Introduction to Heat Transfer (Wiley, 2011).

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Janker, L.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Johnson, J. C.

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Kauzmann, W.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University, 2005).
[Crossref]

Koblmüller, G.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, 1976).
[Crossref]

Kostenbader, T.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Kozlik, M.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Kuhnel, J.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Lester, L. F.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Li, D. H.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Li, G. Y.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Li, J. B.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Li, Q. M.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Li, Y.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Lieber, C. M.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(2), 99–108 (2007).
[Crossref]

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[Crossref]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Liu, B.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Liu, X.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Liu, X. F.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Liu, Y.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Liu, Z. C.

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

Loitsch, B.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Lou, J. Y.

Lu, J. G.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

Lu, Y. Z.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Luk, T. S.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Ma, Y. G.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29(6), 572–574 (2004).
[Crossref] [PubMed]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Mayer, B.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Mazur, E.

McDonnell, A.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Meng, C.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Müller, S.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Ning, C. Z.

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29(6), 572–574 (2004).
[Crossref] [PubMed]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Ning, H.

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

Nogriya, V.

J. K. Dongre, V. Nogriya, and M. Ramrakhiani, “Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching,” Appl. Surf. Sci. 255(12), 6115–6120 (2009).
[Crossref]

Oulton, R. F.

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Pauzauskie, P. J.

P. B. Roder, P. J. Pauzauskie, and E. J. Davis, “Nanowire heating by optical electromagnetic irradiation,” Langmuir 28(46), 16177–16185 (2012).
[Crossref] [PubMed]

Peschel, U.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

Piccione, B.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Pope, R. M.

Qiu, M.

Querry, M. R.

Ramrakhiani, M.

J. K. Dongre, V. Nogriya, and M. Ramrakhiani, “Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching,” Appl. Surf. Sci. 255(12), 6115–6120 (2009).
[Crossref]

Rensberg, J.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

Roder, P. B.

P. B. Roder, P. J. Pauzauskie, and E. J. Davis, “Nanowire heating by optical electromagnetic irradiation,” Langmuir 28(46), 16177–16185 (2012).
[Crossref] [PubMed]

Röder, R.

M. Zapf, C. Ronning, and R. Röder, “High temperature limit of semiconductor nanowire lasers,” Appl. Phys. Lett. 110(17), 173103 (2017).
[Crossref]

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Ronning, C.

M. Zapf, C. Ronning, and R. Röder, “High temperature limit of semiconductor nanowire lasers,” Appl. Phys. Lett. 110(17), 173103 (2017).
[Crossref]

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Rudolph, D.

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Saykally, R. J.

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Shen, Z. X.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Sidiropoulos, T. P.

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

Sum, T. C.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Sun, H. D.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Sunter, K. A.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Tessarek, C.

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

Thielmann, A.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Tong, L. M.

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

van Vugt, L. K.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Wang, G. T.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Wang, S. S.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

Wang, Z. L.

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(2), 99–108 (2007).
[Crossref]

Wille, M.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

Wong, A. B.

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

Wright, J. B.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Wu, H.

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

Wu, X. Q.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Wu, Y. Y.

Y. Y. Wu and P. D. Yang, “Melting and welding semiconductor nanowires in nanotubes,” Adv. Mater. 13(7), 520–523 (2001).
[Crossref]

Xiao, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Xin, C. G.

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

Xiong, Q. H.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Xu, H. W.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

Xu, X. L.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Yan, H. Q.

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Yan, R. X.

P. D. Yang, R. X. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, P. D.

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

P. D. Yang, R. X. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

Y. Y. Wu and P. D. Yang, “Melting and welding semiconductor nanowires in nanotubes,” Adv. Mater. 13(7), 520–523 (2001).
[Crossref]

Yang, Q.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Yang, Z. Y.

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

Ye, Y.

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

Yin, L. J.

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

Yu, H. K.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

Zapf, M.

M. Zapf, C. Ronning, and R. Röder, “High temperature limit of semiconductor nanowire lasers,” Appl. Phys. Lett. 110(17), 173103 (2017).
[Crossref]

Zhang, M.

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Zhao, Y. Y.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
[Crossref]

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

Adv. Mater. (2)

J. B. Li, C. Meng, Y. Liu, X. Q. Wu, Y. Z. Lu, Y. Ye, L. Dai, L. M. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref]

Y. Y. Wu and P. D. Yang, “Melting and welding semiconductor nanowires in nanotubes,” Adv. Mater. 13(7), 520–523 (2001).
[Crossref]

Adv. Opt. Photonics (1)

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[Crossref]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

B. Mayer, L. Janker, D. Rudolph, B. Loitsch, T. Kostenbader, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires,” Appl. Phys. Lett. 108(7), 071107 (2016).
[Crossref]

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101(11), 113106 (2012).
[Crossref]

M. Zapf, C. Ronning, and R. Röder, “High temperature limit of semiconductor nanowire lasers,” Appl. Phys. Lett. 110(17), 173103 (2017).
[Crossref]

Appl. Surf. Sci. (1)

J. K. Dongre, V. Nogriya, and M. Ramrakhiani, “Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching,” Appl. Surf. Sci. 255(12), 6115–6120 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107(34), 8816–8828 (2003).
[Crossref]

J. Phys. Chem. C (1)

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Langmuir (1)

P. B. Roder, P. J. Pauzauskie, and E. J. Davis, “Nanowire heating by optical electromagnetic irradiation,” Langmuir 28(46), 16177–16185 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

MRS Bull. (1)

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(2), 99–108 (2007).
[Crossref]

Nano Lett. (6)

P. D. Yang, R. X. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett. 10(5), 1529–1536 (2010).
[Crossref] [PubMed]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11(3), 1122–1126 (2011).
[Crossref] [PubMed]

R. Röder, T. P. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, “Ultrafast dynamics of lasing semiconductor nanowires,” Nano Lett. 15(7), 4637–4643 (2015).
[Crossref] [PubMed]

Z. C. Liu, L. J. Yin, H. Ning, Z. Y. Yang, L. M. Tong, and C. Z. Ning, “Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation,” Nano Lett. 13(10), 4945–4950 (2013).
[Crossref] [PubMed]

R. Röder, M. Wille, S. Geburt, J. Rensberg, M. Zhang, J. G. Lu, F. Capasso, R. Buschlinger, U. Peschel, and C. Ronning, “Continuous wave nanowire lasing,” Nano Lett. 13(8), 3602–3606 (2013).
[Crossref] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuhnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

Q. Zhang, G. Y. Li, X. F. Liu, Q. Fang, Y. Li, T. C. Sum, C. M. Lieber, and Q. H. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

B. G. Chen, H. Wu, C. G. Xin, D. X. Dai, and L. M. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Nat. Rev. Mater. (1)

S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, and P. D. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 1–11 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Status Solidi B (1)

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

Semicond. Sci. Tech. (1)

M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Tech. 25(2), 024001 (2010).
[Crossref]

Small (1)

Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005).
[Crossref]

Other (5)

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University, 2005).
[Crossref]

J. Holman, Heat Transfer (McGraw-Hill, 1989).

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2014).

W. Koechner, Solid State Laser Engineering (Springer, 1976).
[Crossref]

T. Bergman and F. Incropera, Introduction to Heat Transfer (Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Mathematical model for numerical simulation. A cylindrical NW with radius RNW is embedded in a coaxial liquid cylinder with radius RL.
Fig. 2
Fig. 2 Water-clad 500-nm-diameter CdS NW guides 533-nm-wavelength light. (a) Cross-sectional power distribution of the water-clad CdS NW with a color bar showing the normalized power density. (b) Diameter dependent ERs of the CdS NW. Blue line: in water. Red line: in air.
Fig. 3
Fig. 3 (a) Steady state temperature of NW versus RL/RNW, with 300 µW thermal power. Orange line: in air; green line: in transformer oil; blue line: in water. (b) Dependence of TNW on thermal conductivities of cooling media, with RL/RNW = 2000 and 300 µW thermal power.
Fig. 4
Fig. 4 Temperature of the CdS NW laser in air and water. (a) Heating-power-dependent temperature of NW in a steady state. Orange line: in air; green line: in transformer oil; blue line: in water. (b) Cross-sectional temperature distribution of the model. Details are shown from the dash lines and the dash boxes. Red dot in the center of the cross-section is the NW laser. Water line is extended to the boiling point of water (373 K).
Fig. 5
Fig. 5 Transient temperature of the NW pumped by laser pulses (solid lines) with repetition rates of (a) 100 kHz, (b) 1 MHz and (c) 10 MHz. For reference, calculated temperature evolution of the NW pumped by a continuous-wave light with a constant power equivalent to the average power of the pulses are also provided (dashed lines). Red circles in (a) and (c) indicate the thermal relaxation time of the NW in air and water, respectively. (d), (e) and (f) show the NW temperature evolution of the NW pumped by the continuous-wave light over a much broader time scale (1 ns ∼ 10 ms), with the constant power equivalent to the average power of the pulses in (a), (b), and (c) respectively. Blue arrows (with dotted lines) indicate the corresponding time ranges of (a), (b) and (c) on the abscissae of (d), (e) and (f), respectively.
Fig. 6
Fig. 6 Calculated temperature evolution of a pulse-pumped NW cooled with (circles) and without (solid lines) air convection. Different colors represent different initial temperature of the NW.

Tables (1)

Tables Icon

Table 1 Material parameters [22]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n 1 , 0 r R NW n 2 , R NW < r < R L
T NW = T 0 + P 2 π L k ln ( R L R NW )
ρ c T t = k [ 1 r r ( r T r ) + 2 T z 2 ] + S

Metrics