Abstract

In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides

S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, and P. R. Villeneuve
Opt. Lett. 25(20) 1550-1552 (2000)

Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

Tao Chen, Zhanghua Han, Jianjun Liu, and Zhi Hong
Appl. Opt. 53(16) 3454-3458 (2014)

Thermal emission of macroporous silicon chirped photonic crystals

Moisés Garín, Trifon Trifonov, David Hernández, Ángel Rodriguez, and Ramón Alcubilla
Opt. Lett. 35(20) 3348-3350 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
    [Crossref]
  2. Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
    [Crossref]
  3. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  4. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref]
  5. V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
    [Crossref]
  6. S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
    [Crossref]
  7. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [Crossref]
  8. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [Crossref]
  9. X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
    [Crossref]
  10. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
    [Crossref]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  12. N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
    [Crossref]
  13. Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23(7), 9211–9220 (2015).
    [Crossref]
  14. X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
    [Crossref]
  15. S. Bose, D. G. Angelakis, and D. Burgarth, “Transfer of a Polaritonic Qubit through a Coupled Cavity Array,” J. Mod. Opt. 54(13-15), 2307–2314 (2007).
    [Crossref]
  16. J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78(2), 022323 (2008).
    [Crossref]
  17. H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
    [Crossref]
  18. T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
    [Crossref]
  19. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31(3), 338 (2006).
    [Crossref]
  20. M. Benyoucef, J.-B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett. 36(8), 1317 (2011).
    [Crossref]
  21. H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
    [Crossref]
  22. D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).
  23. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  24. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
    [Crossref]
  25. D. Cardador, D. Segura, D. Vega, and A. Rodriguez, “Coupling defects in macroporous silicon photonic crystals,” in 2017 Spanish Conference on Electron Devices (CDE) (IEEE, 2017), pp. 1–3.
  26. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
    [Crossref]
  27. D. Vega, D. Cardador, M. Garín, T. Trifonov, and A. Rodríguez, “The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters,” J. Lightwave Technol. 34(4), 1281–1287 (2016).
    [Crossref]
  28. A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
    [Crossref]
  29. J. M. Parnis and K. B. Oldham, “Beyond the Beer–Lambert law: The dependence of absorbance on time in photochemistry,” J. Photochem. Photobiol. Chem. 267, 6–10 (2013).
    [Crossref]
  30. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,” Phys. Rev. Lett. 84(10), 2140–2143 (2000).
    [Crossref]
  31. M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3(6), S184–S189 (2001).
    [Crossref]
  32. T. D. Happ, M. Kamp, A. Forchel, A. V. Bazhenov, I. I. Tartakovskii, A. Gorbunov, and V. D. Kulakovskii, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B 20(2), 373–378 (2003).
    [Crossref]
  33. L. Xu-Sheng, C. Xiong-Wen, and L. Sheng, “Investigation and Modification of Coupling of Photonic Crystal Defects,” Chin. Phys. Lett. 22(7), 1698–1701 (2005).
    [Crossref]
  34. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  35. S. R.-K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37(2), 025802 (2016).
    [Crossref]
  36. M. Maksimovic, M. Hammer, and E. W. C. van Groesen, “Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes,” Proc. SPIE 6896, 689603 (2008).
    [Crossref]
  37. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
    [Crossref]
  38. D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
    [Crossref]
  39. S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
    [Crossref]
  40. D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).
  41. J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).
  42. D. M. Beggs, Computational Studies of One and Two-Dimensional Photonic Microstructures (Durham University, 2006).
  43. V. S. Boriskina, Photonic Molecules and Spectral Engineering in Photonic microresonator reasearch and applications (Springer, 2010), chap. 16.
  44. K. Staliunas and V. J. Sánchez-Morcillo, “Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79(5), 053807 (2009).
    [Crossref]

2017 (3)

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
[Crossref]

D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).

2016 (6)

D. Vega, D. Cardador, M. Garín, T. Trifonov, and A. Rodríguez, “The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters,” J. Lightwave Technol. 34(4), 1281–1287 (2016).
[Crossref]

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

S. R.-K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37(2), 025802 (2016).
[Crossref]

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

2015 (4)

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Y. Zhao, C. Qian, K. Qiu, Y. Gao, and X. Xu, “Ultrafast optical switching using photonic molecules in photonic crystal waveguides,” Opt. Express 23(7), 9211–9220 (2015).
[Crossref]

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

2013 (6)

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

J. M. Parnis and K. B. Oldham, “Beyond the Beer–Lambert law: The dependence of absorbance on time in photochemistry,” J. Photochem. Photobiol. Chem. 267, 6–10 (2013).
[Crossref]

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

2012 (2)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

2011 (1)

2010 (1)

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

2009 (1)

K. Staliunas and V. J. Sánchez-Morcillo, “Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79(5), 053807 (2009).
[Crossref]

2008 (2)

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78(2), 022323 (2008).
[Crossref]

M. Maksimovic, M. Hammer, and E. W. C. van Groesen, “Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes,” Proc. SPIE 6896, 689603 (2008).
[Crossref]

2007 (3)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

S. Bose, D. G. Angelakis, and D. Burgarth, “Transfer of a Polaritonic Qubit through a Coupled Cavity Array,” J. Mod. Opt. 54(13-15), 2307–2314 (2007).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

2006 (3)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31(3), 338 (2006).
[Crossref]

S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
[Crossref]

2005 (1)

L. Xu-Sheng, C. Xiong-Wen, and L. Sheng, “Investigation and Modification of Coupling of Photonic Crystal Defects,” Chin. Phys. Lett. 22(7), 1698–1701 (2005).
[Crossref]

2003 (3)

T. D. Happ, M. Kamp, A. Forchel, A. V. Bazhenov, I. I. Tartakovskii, A. Gorbunov, and V. D. Kulakovskii, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B 20(2), 373–378 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

2002 (1)

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

2001 (1)

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3(6), S184–S189 (2001).
[Crossref]

2000 (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,” Phys. Rev. Lett. 84(10), 2140–2143 (2000).
[Crossref]

1998 (2)

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Angelakis, D. G.

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78(2), 022323 (2008).
[Crossref]

S. Bose, D. G. Angelakis, and D. Burgarth, “Transfer of a Polaritonic Qubit through a Coupled Cavity Array,” J. Mod. Opt. 54(13-15), 2307–2314 (2007).
[Crossref]

Asakawa, K.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Asano, T.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Bajcsy, M.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Bayer, M.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Bayindir, M.

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3(6), S184–S189 (2001).
[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,” Phys. Rev. Lett. 84(10), 2140–2143 (2000).
[Crossref]

Bazhenov, A. V.

Benyoucef, M.

Boriskina, S. V.

Bose, S.

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78(2), 022323 (2008).
[Crossref]

S. Bose, D. G. Angelakis, and D. Burgarth, “Transfer of a Polaritonic Qubit through a Coupled Cavity Array,” J. Mod. Opt. 54(13-15), 2307–2314 (2007).
[Crossref]

Brown, L. R.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Burgarth, D.

S. Bose, D. G. Angelakis, and D. Burgarth, “Transfer of a Polaritonic Qubit through a Coupled Cavity Array,” J. Mod. Opt. 54(13-15), 2307–2314 (2007).
[Crossref]

Cardador, D.

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
[Crossref]

D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).

D. Vega, D. Cardador, M. Garín, T. Trifonov, and A. Rodríguez, “The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters,” J. Lightwave Technol. 34(4), 1281–1287 (2016).
[Crossref]

D. Cardador, D. Segura, D. Vega, and A. Rodriguez, “Coupling defects in macroporous silicon photonic crystals,” in 2017 Spanish Conference on Electron Devices (CDE) (IEEE, 2017), pp. 1–3.

Caselli, N.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Chackerian, C.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Chakravarty, S.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Chau, F. S.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

Chen, G.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

Chen, R. T.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Chen, X.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Cho, J.

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78(2), 022323 (2008).
[Crossref]

Chung, C.-J.

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Cohen, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Coudert, L. H.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Dana, V.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

De Leonardis, F.

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Deng, J.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

Donegan, J. F.

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

Dothe, H.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Dremin, A. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Du, H.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

Elbaz, A.

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

Fiore, A.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Forchel, A.

T. D. Happ, M. Kamp, A. Forchel, A. V. Bazhenov, I. I. Tartakovskii, A. Gorbunov, and V. D. Kulakovskii, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B 20(2), 373–378 (2003).
[Crossref]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Gao, Y.

Garín, M.

Gerardino, A.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Giver, L. P.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Goldman, A.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Gong, Q.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Gorbunov, A.

Gösele, U.

S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
[Crossref]

Gu, Z. Z.

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

Gurioli, M.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Hammer, M.

M. Maksimovic, M. Hammer, and E. W. C. van Groesen, “Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes,” Proc. SPIE 6896, 689603 (2008).
[Crossref]

Happ, T. D.

Hillebrand, R.

S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
[Crossref]

Ho, W. O.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

Hodgkinson, J.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Ikeda, N.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Intonti, F.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Ishikawa, H.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Jiang, X.-F.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Kalt, H.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Kamp, M.

Knipp, P. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Koos, C.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Kraemmer, S.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Kulakovskii, V. D.

T. D. Happ, M. Kamp, A. Forchel, A. V. Bazhenov, I. I. Tartakovskii, A. Gorbunov, and V. D. Kulakovskii, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B 20(2), 373–378 (2003).
[Crossref]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Kuo, Y.-H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Kural, C.

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3(6), S184–S189 (2001).
[Crossref]

La China, F.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

La Notte, M.

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Lai, W.-C.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

Lan, S.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Li, L.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Linfield, E. H.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Majumdar, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Maksimovic, M.

M. Maksimovic, M. Hammer, and E. W. C. van Groesen, “Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes,” Proc. SPIE 6896, 689603 (2008).
[Crossref]

Mandin, J.-Y.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

Matthias, S.

S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
[Crossref]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

Müller, F.

S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
[Crossref]

Nishikawa, S.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Noda, S.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Oldham, K. B.

J. M. Parnis and K. B. Oldham, “Beyond the Beer–Lambert law: The dependence of absorbance on time in photochemistry,” J. Photochem. Photobiol. Chem. 267, 6–10 (2013).
[Crossref]

Ozbay, E.

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3(6), S184–S189 (2001).
[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,” Phys. Rev. Lett. 84(10), 2140–2143 (2000).
[Crossref]

Pagliano, F.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Pan, Z.

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Paniccia, M.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Parnis, J. M.

J. M. Parnis and K. B. Oldham, “Beyond the Beer–Lambert law: The dependence of absorbance on time in photochemistry,” J. Photochem. Photobiol. Chem. 267, 6–10 (2013).
[Crossref]

Passaro, V. M. N.

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Qian, C.

Qiu, K.

Raday, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Rakovich, Y. P.

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

Reinecke, T. L.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Reithmaier, J. P.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Riboli, F.

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Richter, B.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Rinsland, C. P.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Rodriguez, A.

D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).

D. Cardador, D. Segura, D. Vega, and A. Rodriguez, “Coupling defects in macroporous silicon photonic crystals,” in 2017 Spanish Conference on Electron Devices (CDE) (IEEE, 2017), pp. 1–3.

Rodriguez, S. R.-K.

S. R.-K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37(2), 025802 (2016).
[Crossref]

Rodríguez, A.

D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
[Crossref]

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

D. Vega, D. Cardador, M. Garín, T. Trifonov, and A. Rodríguez, “The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters,” J. Lightwave Technol. 34(4), 1281–1287 (2016).
[Crossref]

Rong, H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Rundquist, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Saffell, J. R.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

Sánchez-Morcillo, V. J.

K. Staliunas and V. J. Sánchez-Morcillo, “Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79(5), 053807 (2009).
[Crossref]

Schierle, S.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Schmidt, O. G.

Schoenfeld, W. G.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Schuch, P.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Segura, D.

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
[Crossref]

D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).

D. Cardador, D. Segura, D. Vega, and A. Rodriguez, “Coupling defects in macroporous silicon photonic crystals,” in 2017 Spanish Conference on Electron Devices (CDE) (IEEE, 2017), pp. 1–3.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Sheng, L.

L. Xu-Sheng, C. Xiong-Wen, and L. Sheng, “Investigation and Modification of Coupling of Photonic Crystal Defects,” Chin. Phys. Lett. 22(7), 1698–1701 (2005).
[Crossref]

Shim, J.-B.

Siegle, T.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Sih, V.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Smith, R.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

Spencer, M. N.

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Staliunas, K.

K. Staliunas and V. J. Sánchez-Morcillo, “Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79(5), 053807 (2009).
[Crossref]

Sugimoto, Y.

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Takahashi, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Tang, N.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

Tartakovskii, I. I.

Tatam, R. P.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,” Phys. Rev. Lett. 84(10), 2140–2143 (2000).
[Crossref]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Trifonov, T.

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

D. Vega, D. Cardador, M. Garín, T. Trifonov, and A. Rodríguez, “The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters,” J. Lightwave Technol. 34(4), 1281–1287 (2016).
[Crossref]

Troia, B.

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

van Groesen, E. W. C.

M. Maksimovic, M. Hammer, and E. W. C. van Groesen, “Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes,” Proc. SPIE 6896, 689603 (2008).
[Crossref]

Vega, D.

D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).

D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
[Crossref]

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

D. Vega, D. Cardador, M. Garín, T. Trifonov, and A. Rodríguez, “The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters,” J. Lightwave Technol. 34(4), 1281–1287 (2016).
[Crossref]

D. Cardador, D. Segura, D. Vega, and A. Rodriguez, “Coupling defects in macroporous silicon photonic crystals,” in 2017 Spanish Conference on Electron Devices (CDE) (IEEE, 2017), pp. 1–3.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Vollmer, F.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

Vuckovic, J.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Wang, L.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Wiersig, J.

Wondimu, S. F.

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Wu, P.

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xiao, Y.-F.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Xiong-Wen, C.

L. Xu-Sheng, C. Xiong-Wen, and L. Sheng, “Investigation and Modification of Coupling of Photonic Crystal Defects,” Chin. Phys. Lett. 22(7), 1698–1701 (2005).
[Crossref]

Xu, H.

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

Xu, S.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Xu, X.

Xu-Sheng, L.

L. Xu-Sheng, C. Xiong-Wen, and L. Sheng, “Investigation and Modification of Coupling of Photonic Crystal Defects,” Chin. Phys. Lett. 22(7), 1698–1701 (2005).
[Crossref]

Yan, H.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

Zhang, X.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Zhao, Y.

Zhou, G.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

Zhu, C.

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

Zou, C.-L.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Zou, Y.

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

ACS Photonics (1)

N. Caselli, F. Riboli, F. La China, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, F. Intonti, and M. Gurioli, “Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays,” ACS Photonics 2(5), 565–571 (2015).
[Crossref]

Appl. Phys. Lett. (1)

X. Zhang, S. Chakravarty, C.-J. Chung, Z. Pan, H. Yan, and R. T. Chen, “Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities,” Appl. Phys. Lett. 107(22), 221104 (2015).
[Crossref]

Biol. Chem. (1)

D. Segura, D. Vega, D. Cardador, and A. Rodriguez, “Effect of fabrication tolerances in macroporous silicon photonic crystals,” Biol. Chem. 186, 580–588 (2017).

Chin. Phys. Lett. (1)

L. Xu-Sheng, C. Xiong-Wen, and L. Sheng, “Investigation and Modification of Coupling of Photonic Crystal Defects,” Chin. Phys. Lett. 22(7), 1698–1701 (2005).
[Crossref]

Eur. J. Phys. (1)

S. R.-K. Rodriguez, “Classical and quantum distinctions between weak and strong coupling,” Eur. J. Phys. 37(2), 025802 (2016).
[Crossref]

Front. Optoelectron. (1)

S. Chakravarty, X. Chen, N. Tang, W.-C. Lai, Y. Zou, H. Yan, and R. T. Chen, “Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications,” Front. Optoelectron. 9(2), 206–224 (2016).
[Crossref]

Infrared Phys. Technol. (1)

D. Cardador, D. Vega, D. Segura, and A. Rodríguez, “Study of resonant modes in a 700nm pitch macroporous silicon photonic crystal,” Infrared Phys. Technol. 80, 6–10 (2017).
[Crossref]

J. Appl. Phys. (1)

S. Matthias, R. Hillebrand, F. Müller, and U. Gösele, “Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal,” J. Appl. Phys. 99(11), 113102 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, “Photonic crystal for gas sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(38), 6087–6098 (2013).
[Crossref]

J. Mod. Opt. (1)

S. Bose, D. G. Angelakis, and D. Burgarth, “Transfer of a Polaritonic Qubit through a Coupled Cavity Array,” J. Mod. Opt. 54(13-15), 2307–2314 (2007).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic bandgap structures,” J. Opt. A, Pure Appl. Opt. 3(6), S184–S189 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. Chem. (1)

J. M. Parnis and K. B. Oldham, “Beyond the Beer–Lambert law: The dependence of absorbance on time in photochemistry,” J. Photochem. Photobiol. Chem. 267, 6–10 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Goldman, L. R. Brown, W. G. Schoenfeld, M. N. Spencer, C. Chackerian, L. P. Giver, H. Dothe, C. P. Rinsland, L. H. Coudert, V. Dana, and J.-Y. Mandin, “Nitric oxide line parameters: review of 1996 hitran update and new results,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 825–838 (1998).
[Crossref]

Laser Photonics Rev. (2)

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photonics Rev. 10(1), 40–61 (2016).
[Crossref]

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photonics Rev. 4(2), 179–191 (2010).
[Crossref]

Light Sci. Appl. (1)

T. Siegle, S. Schierle, S. Kraemmer, B. Richter, S. F. Wondimu, P. Schuch, C. Koos, and H. Kalt, “Photonic molecules with a tunable inter-cavity gap,” Light Sci. Appl. 6(3), e16224 (2016).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

Nat. Photonics (2)

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Nature (2)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

Photon. Nanostruct.–Fundam. Appl. (1)

D. Cardador, D. Vega, D. Segura, T. Trifonov, and A. Rodríguez, “Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications,” Photon. Nanostruct.–Fundam. Appl. 25, 46–51 (2017).

Phys. Rev. A (2)

J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78(2), 022323 (2008).
[Crossref]

K. Staliunas and V. J. Sánchez-Morcillo, “Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79(5), 053807 (2009).
[Crossref]

Phys. Rev. B (2)

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one- and two-dimensional photonic crystals,” Phys. Rev. B 65(16), 165208 (2002).
[Crossref]

Phys. Rev. Lett. (2)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals,” Phys. Rev. Lett. 84(10), 2140–2143 (2000).
[Crossref]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Proc. SPIE (2)

M. Maksimovic, M. Hammer, and E. W. C. van Groesen, “Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes,” Proc. SPIE 6896, 689603 (2008).
[Crossref]

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

RSC Advances (1)

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Advances 3(1), 25–44 (2013).
[Crossref]

Sci. Rep. (1)

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref]

Sens. Actuat. B Chem. (1)

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor,” Sens. Actuat. B Chem. 264, 172– 179 (2013).

Other (3)

D. M. Beggs, Computational Studies of One and Two-Dimensional Photonic Microstructures (Durham University, 2006).

V. S. Boriskina, Photonic Molecules and Spectral Engineering in Photonic microresonator reasearch and applications (Springer, 2010), chap. 16.

D. Cardador, D. Segura, D. Vega, and A. Rodriguez, “Coupling defects in macroporous silicon photonic crystals,” in 2017 Spanish Conference on Electron Devices (CDE) (IEEE, 2017), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Left: Schematic representation of the structure and its mode of operation. The source emits light that travels through the photonic crystal. Modulation areas create the bandgap and cavities allow some transmission within it. (Up) and (down), simulated and fabricated profile in the periodical case, respectively. Middle: picture of one of the manufacturated samples. All of them have an attached round area of about 1 cm in diameter. Right: top-view of the sample where the array of inverted pyramids of 700 nm pitch is depicted.
Fig. 2
Fig. 2 Left: SEM image of a PC with a single cavity. Right: optical response of the PC for both, experimental (solid line) and simulation (dashed line).
Fig. 3
Fig. 3 Left: SEM image of a PC with two cavities with the same value for all periods. Right: in the upper part is depicted the experimental optical response of the PC. The lowest image correspond to the simulations.
Fig. 4
Fig. 4 Section of the pore showing the electrical field (Ey) traveling along the PC. In the left image we can observe that there is the same presence of the field in both cavities (that have higer values than the rest of the PC due to the reonances). In the right image we see that, due to the chirped configuration, the presence of electrical field in the second cavity has been subtantially removed. On the top of both images it is depicted the simulated profile.
Fig. 5
Fig. 5 Left: SEM image of a PC with two cavities in the chirped configuration. Right: optical response of the PC shown in left image for both, experimental (up) and simulation (down).
Fig. 6
Fig. 6 Optical response of a 3-defect PC (A) when the three cavities have the same length of 2.6 µm. The variation of the cavities’ length has an impact in the amplitude of the involved peaks. In figure (B) we present the coupling of two cavities of 2.2 µm and one of 2.6 µm. In (C) figure, we can observe how the configuration of 3.0 µm, 2.6 µm and 2.2 µm arises the central peak and reduce the amplitude of the others. Finally, it is possible to reduce the peaks by applying a chirped modulation (D).
Fig. 7
Fig. 7 Left: SEM image of a PC with three cavities in the chirped configuration. Center: comparison between experimental (up) and the simulated results (bottom). Right: peak’s transmission decreases as we increase the concentration in steps of 1000 ppm, from 0 ppm to 3000 ppm.

Metrics