Abstract

The design of a continuously tunable optical delay line based on a compact graphene-based silicon Bragg grating is reported. High performance, in terms of electro-optical switching time (tswitch < 8 ns), delay range (Δτ = 200 ps), and figure of merit FOM = Δτ/A = 1.54x105 ps/mm2, has been achieved with an ultra-compact device footprint (A ~1.3 x 10−3 mm2), so improving the state-of-the-art of integrated optical delay lines. A continuous and complete tunability of the delay time can be achieved with a very low delay loss ( = 0.03 dB/ps) and a weak power consumption ( = 0.05 mW/ps). A flat bandwidth B = 1.19 GHz has been calculated by exploiting the slow-light effect in the device. This performance makes the proposed optical delay line suitable for several applications in Microwave Photonics (MWP), such as beamsteering/beamforming, for which large delay range, flat and wide bandwidth and small volume are required.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas

Teresa Tatoli, Donato Conteduca, Francesco Dell’Olio, Caterina Ciminelli, and Mario N. Armenise
Appl. Opt. 55(16) 4342-4349 (2016)

Continuously tunable ultra-thin silicon waveguide optical delay line

Xinyi Wang, Linjie Zhou, Ruifei Li, Jingya Xie, Liangjun Lu, Kan Wu, and Jianping Chen
Optica 4(5) 507-515 (2017)

Continuously tunable delay line based on SOI tapered Bragg gratings

Ivano Giuntoni, David Stolarek, Dimitar I. Kroushkov, Jürgen Bruns, Lars Zimmermann, Bernd Tillack, and Klaus Petermann
Opt. Express 20(10) 11241-11246 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
    [Crossref] [PubMed]
  3. C. Ciminelli, F. Dell’ Olio, and M. N. Armenise, Photonics in Space (World Scientific, 2016).
  4. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  5. M. Longbrake, “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference NAECON (2012).
  6. T. Tatoli, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt. 55(16), 4342–4349 (2016).
    [Crossref] [PubMed]
  7. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35(26), 5293–5300 (1996).
    [Crossref] [PubMed]
  8. S. Li, X. Li, W. Zou, and J. Chen, “Rangeability extension of fiber-optic low-coherence measurement based on cascaded multistage fiber delay line,” Appl. Opt. 51(6), 771–775 (2012).
    [Crossref] [PubMed]
  9. E. F. Burmeister, J. P. Mack, H. N. Poulsen, M. L. Masanović, B. Stamenić, D. J. Blumenthal, and J. E. Bowers, “Photonic integrated circuit optical buffer for packet-switched networks,” Opt. Express 17(8), 6629–6635 (2009).
    [Crossref] [PubMed]
  10. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
    [Crossref] [PubMed]
  11. I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D. Y. Choi, P. Ma, S. Madden, and B. J. Eggleton, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett. 42(7), 1313–1316 (2017).
    [Crossref] [PubMed]
  12. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
    [Crossref] [PubMed]
  13. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39(3), 701–703 (2014).
    [Crossref] [PubMed]
  14. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
    [Crossref]
  15. X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, K. Wu, and J. Chen, “Continuously tunable ultra-thin silicon waveguide optical delay line,” Optica 4(5), 507–515 (2017).
    [Crossref]
  16. J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
    [Crossref]
  17. N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40 gb/s for optical packet switching networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
    [Crossref]
  18. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
    [Crossref] [PubMed]
  19. P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
    [Crossref]
  20. Y. Xie, L. Zhuang, K. J. Boller, and A. J. Lowery, “Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier,” J. Opt. 19(6), 065802 (2017).
    [Crossref]
  21. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [Crossref]
  22. J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene reconfigurable CROWS and SCISSORS,” IEEE Photonics J. 7(2), 1–9 (2015).
    [Crossref]
  23. D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
    [Crossref]
  24. C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. N. Armenise, “Novel graphene-based photonic devices for efficient light control and manipulation,” in Proceedings in IEEE 17th International Conference on Transparent Optical Networks (ICTON, 2015).
    [Crossref]
  25. F. Zangeneh-Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
    [Crossref]
  26. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
    [Crossref]
  27. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  28. A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on graphene-on-silicon slot waveguides,” Opt. Lett. 41(11), 2501–2504 (2016).
    [Crossref] [PubMed]
  29. J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
    [Crossref] [PubMed]
  30. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  31. F. Zangeneh-Nejad and R. Safian, “A Graphene-Based THz Ring Resonator for Label-Free Sensing,” IEEE Sens. J. 16(11), 4338–4344 (2016).
    [Crossref]
  32. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  33. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  34. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref] [PubMed]
  35. V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
    [Crossref] [PubMed]
  36. J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene Bragg gratings,” Opt. Express 22(5), 5283–5290 (2014).
    [Crossref] [PubMed]
  37. Z. Sheng, C. Qiu, H. Li, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Low loss silicon nanowire waveguide fabricated with 0.13 µm CMOS technology,” in Proceedings in IEEE Comm. and Photon. Conference (ACP) (2012).
  38. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  39. J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
    [Crossref] [PubMed]
  40. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, 2012).
  41. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291 (2011).
    [Crossref] [PubMed]
  42. F. Z. -Nejad, S. A. Ramezani, K. Arik, and A. Khavasi, “Beam focusing using two-dimensional graphene-based meta-reflect-array,” in 2016 24th Iranian Conference on Electrical Engineering (ICEE, 2016), pp. 613–616.
  43. E. Simsek, “A closed-form approximate expression for the optical conductivity of graphene,” Opt. Lett. 38(9), 1437–1439 (2013).
    [Crossref] [PubMed]

2017 (3)

2016 (5)

A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on graphene-on-silicon slot waveguides,” Opt. Lett. 41(11), 2501–2504 (2016).
[Crossref] [PubMed]

T. Tatoli, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt. 55(16), 4342–4349 (2016).
[Crossref] [PubMed]

F. Zangeneh-Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

F. Zangeneh-Nejad and R. Safian, “A Graphene-Based THz Ring Resonator for Label-Free Sensing,” IEEE Sens. J. 16(11), 4338–4344 (2016).
[Crossref]

2015 (4)

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene reconfigurable CROWS and SCISSORS,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (7)

S. Li, X. Li, W. Zou, and J. Chen, “Rangeability extension of fiber-optic low-coherence measurement based on cascaded multistage fiber delay line,” Appl. Opt. 51(6), 771–775 (2012).
[Crossref] [PubMed]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[Crossref] [PubMed]

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2010 (3)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

2009 (3)

2008 (3)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2005 (1)

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

1996 (1)

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Antoine, J.

Armenise, M. N.

T. Tatoli, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt. 55(16), 4342–4349 (2016).
[Crossref] [PubMed]

D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. N. Armenise, “Novel graphene-based photonic devices for efficient light control and manipulation,” in Proceedings in IEEE 17th International Conference on Transparent Optical Networks (ICTON, 2015).
[Crossref]

Aryanfar, I.

Avouris, P.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Baba, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Ben Yoo, S. J.

Bentum, M. J.

Blumenthal, D. J.

Boller, K. J.

Y. Xie, L. Zhuang, K. J. Boller, and A. J. Lowery, “Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier,” J. Opt. 19(6), 065802 (2017).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bowers, J. E.

Burla, M.

Burmeister, E. F.

Byrnes, A.

Capmany, J.

J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene reconfigurable CROWS and SCISSORS,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene Bragg gratings,” Opt. Express 22(5), 5283–5290 (2014).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Cardenas, J.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

Chen, J.

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

Chen, W.

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40 gb/s for optical packet switching networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Chen, Z.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Cheng, Z.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on graphene-on-silicon slot waveguides,” Opt. Lett. 41(11), 2501–2504 (2016).
[Crossref] [PubMed]

Choi, D. Y.

Choudhary, A.

Chu, S.

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40 gb/s for optical packet switching networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Ciminelli, C.

T. Tatoli, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt. 55(16), 4342–4349 (2016).
[Crossref] [PubMed]

D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. N. Armenise, “Novel graphene-based photonic devices for efficient light control and manipulation,” in Proceedings in IEEE 17th International Conference on Transparent Optical Networks (ICTON, 2015).
[Crossref]

Conteduca, D.

T. Tatoli, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt. 55(16), 4342–4349 (2016).
[Crossref] [PubMed]

D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. N. Armenise, “Novel graphene-based photonic devices for efficient light control and manipulation,” in Proceedings in IEEE 17th International Conference on Transparent Optical Networks (ICTON, 2015).
[Crossref]

Dell’Olio, F.

T. Tatoli, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,” Appl. Opt. 55(16), 4342–4349 (2016).
[Crossref] [PubMed]

D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. N. Armenise, “Novel graphene-based photonic devices for efficient light control and manipulation,” in Proceedings in IEEE 17th International Conference on Transparent Optical Networks (ICTON, 2015).
[Crossref]

Djordjevic, S. S.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Dolfi, D.

Domenech, D.

J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene reconfigurable CROWS and SCISSORS,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene Bragg gratings,” Opt. Express 22(5), 5283–5290 (2014).
[Crossref] [PubMed]

Eggleton, B. J.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291 (2011).
[Crossref] [PubMed]

Feng, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Ferrari, C.

Fontaine, N.

Fontaine, N. K.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Goda, K.

Granger, P.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hayakawa, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hosoi, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Huignard, J. P.

Hulzinga, A.

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Ishikura, N.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Joffre, P.

Jorna, P.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Karalar, A. O.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Khurgin, J. B.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lee, Y.-H. D.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Li, E.

Li, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

Li, R.

Li, S.

Li, W.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Li, X.

Lin, Y.-M.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Lipson, M.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

Little, B. E.

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40 gb/s for optical packet switching networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, Y.

Longbrake, M.

M. Longbrake, “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference NAECON (2012).

Lowery, A. J.

Y. Xie, L. Zhuang, K. J. Boller, and A. J. Lowery, “Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier,” J. Opt. 19(6), 065802 (2017).
[Crossref]

Lu, L.

Luther-Davies, B.

Ma, P.

Mack, J. P.

Madden, S.

Marpaung, D.

Marpaung, D. A. I.

Martinelli, M.

Masanovic, M. L.

Meijerink, A.

Meijerink, R.

Melloni, A.

Midrio, M.

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

Morichetti, F.

Morton, P. A.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

Mueller, T.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Munoz, P.

J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene reconfigurable CROWS and SCISSORS,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Muñoz, P.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

Pan, Z.

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40 gb/s for optical packet switching networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Pant, R.

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Patel, D.

Phare, C. T.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Phatak, A.

Philippet, D.

Plant, D. V.

Poulsen, H. N.

Poulton, C. G.

Qi, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Qi, L.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Qian, X.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Qin, C.

Roeloffzen, C. G. H.

Romagnoli, M.

Safian, R.

F. Zangeneh-Nejad and R. Safian, “A Graphene-Based THz Ring Resonator for Label-Free Sensing,” IEEE Sens. J. 16(11), 4338–4344 (2016).
[Crossref]

F. Zangeneh-Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

Shi, W.

Shinkawa, M.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Shu, C.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Simsek, E.

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Sorianello, V.

Stamenic, B.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tamanuki, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Tatoli, T.

Tsang, H. K.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291 (2011).
[Crossref] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

van Etten, W.

Veerasubramanian, V.

Verpoorte, J.

Vu, K.

Wan, X.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, J.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Wang, X.

Wu, K.

Xia, F.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Xie, J.

Xie, Y.

Y. Xie, L. Zhuang, K. J. Boller, and A. J. Lowery, “Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier,” J. Opt. 19(6), 065802 (2017).
[Crossref]

Xu, J.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yang, C.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Yang, J.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

N. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously tunable optical buffering at 40 gb/s for optical packet switching networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

Yao, J.

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, S. J. B.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Zangeneh-Nejad, F.

F. Zangeneh-Nejad and R. Safian, “A Graphene-Based THz Ring Resonator for Label-Free Sensing,” IEEE Sens. J. 16(11), 4338–4344 (2016).
[Crossref]

F. Zangeneh-Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhou, L.

Zhu, B.

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Zhuang, L.

Zou, W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

IEEE Photonics J. (2)

J. Capmany, D. Domenech, and P. Munoz, “Silicon graphene reconfigurable CROWS and SCISSORS,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Resonant graphene-based tunable optical delay line,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photonics Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photonics Technol. Lett. 24(6), 512–514 (2012).
[Crossref]

IEEE Sens. J. (1)

F. Zangeneh-Nejad and R. Safian, “A Graphene-Based THz Ring Resonator for Label-Free Sensing,” IEEE Sens. J. 16(11), 4338–4344 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Nanophotonics (1)

F. Zangeneh-Nejad and R. Safian, “Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure,” J. Nanophotonics 10(3), 036005 (2016).
[Crossref]

J. Opt. (1)

Y. Xie, L. Zhuang, K. J. Boller, and A. J. Lowery, “Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier,” J. Opt. 19(6), 065802 (2017).
[Crossref]

Nano Lett. (1)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Nanoscale (2)

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

J. Wang, Z. Cheng, Z. Chen, X. Wan, B. Zhu, H. K. Tsang, C. Shu, and J. Xu, “High-responsivity graphene-on-silicon slot waveguide photodetectors,” Nanoscale 8(27), 13206–13211 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3(867), 867 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (2)

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Optica (1)

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291 (2011).
[Crossref] [PubMed]

Other (6)

F. Z. -Nejad, S. A. Ramezani, K. Arik, and A. Khavasi, “Beam focusing using two-dimensional graphene-based meta-reflect-array,” in 2016 24th Iranian Conference on Electrical Engineering (ICEE, 2016), pp. 613–616.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, 2012).

Z. Sheng, C. Qiu, H. Li, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Low loss silicon nanowire waveguide fabricated with 0.13 µm CMOS technology,” in Proceedings in IEEE Comm. and Photon. Conference (ACP) (2012).

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. N. Armenise, “Novel graphene-based photonic devices for efficient light control and manipulation,” in Proceedings in IEEE 17th International Conference on Transparent Optical Networks (ICTON, 2015).
[Crossref]

C. Ciminelli, F. Dell’ Olio, and M. N. Armenise, Photonics in Space (World Scientific, 2016).

M. Longbrake, “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference NAECON (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the graphene-based silicon Bragg grating, with the nanowire cross-section in the inset.

Fig. 2
Fig. 2

Real (a) and imaginary (b) part of the effective indices in the sections with the graphene capacitor, for TE (red curve) and TM (blue curve) modes, as a function of the electrochemical potential µc.

Fig. 3
Fig. 3

Time delay spectra for several values of the electrochemical potential µc with Lg = 2 mm.

Fig. 4
Fig. 4

Maximum delay time τmax vs voltage Vg and electrochemical potential µc with Lg = 2 mm.

Fig. 5
Fig. 5

(a) Delay time and (b) group index spectra of 2 mm Bragg grating, applying voltage Vg = 4.363 V.

Fig. 6
Fig. 6

(a) Behaviour of τmax and τmin and (b) of V(τmax) and V(τmin) as a function of the grating length Lg.

Fig. 7
Fig. 7

(a) Delay loss (blue line) and FOM (red line) as a function of Lg. Transmission spectra at the band edge of the Bragg grating with (b) Lg = 2.3 mm (λ0 = λ(τmax) = 1547.67 nm), (c) Lg = 2.6 mm (λ0 = λ(τmax) = 1547.65 nm), and (d) Lg = 2.9 mm (λ0 = λ(τmax) = 1547.63 nm), when V(τmax) and V(τmin) are applied to the graphene electrodes.

Fig. 8
Fig. 8

(a) Transmission spectrum of the Bragg grating with Lg = 2.6 mm and (b) related delay time. (c) Zoom of the transmission spectrum and (d) delay time of the first resonance peak at the band edge. Δf is the frequency shift from resonant frequency (f0 ≈193.824 THz corresponding to λ0 ≈1547.65 nm).

Fig. 9
Fig. 9

Tuning of the time delay as a function of the capacitor voltage

Tables (2)

Tables Icon

Table 1 Performance of the graphene-based Si Bragg grating with Lg = 2.6 mm

Tables Icon

Table 2 State-of-the-art of optical delay lines with optical resonators.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T= [ 1 t 2 ( e j ϕ + r 2 e j ϕ ) r t 2 ( e j ϕ + e j ϕ ) r t 2 ( e j ϕ + e j ϕ ) 1 t 2 ( e j ϕ + r 2 e j ϕ ) ] N
S= 1 T 11 [ T 21 detΤ 1 T 12 ]
τ= ( S 12 ) ω
μ c ( V g )= ν F π C ' e | V g V 0 |
E switch = 1 2 C( V ( τ max ) 2 V ( τ min ) 2 )