Abstract

A highly sensitive optical fiber torsion sensor with femtosecond laser-induced low birefringence SMF-based Sagnac interferometer (SI) is proposed and experimentally demonstrated in this paper. A straight-line waveguide positioned horizontally with respect to the fiber core is inscribed by the femtosecond laser in the cladding of the SMF, which leads to the asymmetry stress distribution in the SMF, and then gives rise to the low birefringence in the SMF. Compared with most of the previous reported SI based torsion sensors, there is no splicing joint in the femtosecond laser-induced low birefringence SMF-based SI, which lowers the transmission loss and makes the SI based torsion sensor more robust simultaneously. The experiment result shows that the proposed torsion sensor exhibits a torsion sensitivity of up to 3.2562 nm/degree, with the high torsion resolution of 0.003 degree. In contrast, the temperature cross-sensitivity and strain cross-sensitivity of the proposed torsion sensor are low, to −0.000055 degree/°C and 0.000013 degree/με, respectively, thus overcoming the cross-sensitivity problem resulting from temperature and strain. Moreover, theoretical analysis are carried out to compare with the experimental results to demonstrate the feasibility and good consistency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity modulated torsion sensor based on optical fiber reflective Lyot filter

Bo Huang, Xuewen Shu, and Yueqing Du
Opt. Express 25(5) 5081-5090 (2017)

Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers

Binbin Song, Hao Zhang, Yinping Miao, Wei Lin, Jixuan Wu, Haifeng Liu, Donglin Yan, and Bo Liu
Opt. Express 23(12) 15372-15379 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
    [Crossref]
  2. D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
    [Crossref]
  3. D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
    [Crossref]
  4. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  5. L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [Crossref] [PubMed]
  6. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  7. F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
    [Crossref] [PubMed]
  8. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  9. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
    [Crossref]
  10. B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
    [Crossref] [PubMed]
  11. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
    [Crossref] [PubMed]
  12. L. Chen, W. G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L. Y. Zhang, B. Wang, and T. Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
    [Crossref] [PubMed]
  13. L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
    [Crossref] [PubMed]
  14. Q. Zhou, W. Zhang, L. Chen, T. Yan, L. Zhang, L. Wang, and B. Wang, “Fiber torsion sensor based on a twist taper in polarization-maintaining fiber,” Opt. Express 23(18), 23877–23886 (2015).
    [Crossref] [PubMed]
  15. B. Huang, X. Shu, and Y. Du, “Intensity modulated torsion sensor based on optical fiber reflective Lyot filter,” Opt. Express 25(5), 5081–5090 (2017).
    [Crossref] [PubMed]
  16. B. Huang and X. Shu, “Highly Sensitive Twist Sensor Based on Temperature- and Strain-Independent Fiber Lyot Filter,” J. Lightwave Technol. 35(10), 2026–2031 (2017).
    [Crossref]
  17. O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
    [Crossref] [PubMed]
  18. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [Crossref] [PubMed]
  19. W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
    [Crossref]
  20. H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  21. P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  22. K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores,” Opt. Express 23(3), 3589–3601 (2015).
    [Crossref] [PubMed]
  23. B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
    [Crossref] [PubMed]
  24. Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
    [Crossref]
  25. L. A. Fernandes, J. R. Grenier, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, “Strong birefringence tuning of optical waveguides with femtosecond laser irradiation of bulk fused silica and single mode fibers,” J. Lightwave Technol. 31(22), 3563–3569 (2013).
    [Crossref]
  26. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized High Birefringence Induced in SMF-28 Fiber by Femtosecond IR Laser Exposure of the Cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
    [Crossref]
  27. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  28. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

2015 (5)

2014 (3)

2013 (3)

2012 (2)

2011 (2)

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

2010 (3)

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (1)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

2002 (1)

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

1995 (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

1981 (1)

1979 (1)

Aitchison, J. S.

Baptista, J. M.

Barlow, A. J.

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Brasseur, G.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Cai, H.

Ceballos-Herrera, D. E.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Cermak, S. P.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Chan, C.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, L.

Chen, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Chen, Y.

Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
[Crossref]

Chung, Y.

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores,” Opt. Express 23(3), 3589–3601 (2015).
[Crossref] [PubMed]

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Dong, X.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Du, Y.

Fang, Z.

Farrell, G.

Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
[Crossref]

Fernandes, L. A.

Frazão, O.

Fulmek, P. L.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Gao, R.

Garcia, L.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Gong, T.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Grenier, J. R.

Grobnic, D.

Herman, P. R.

Huang, B.

Huang, X.

Jian, S.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Jiang, L.

Jiang, M.

Jiang, Y.

Jin, Y.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Khatib, O.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Kim, B.

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores,” Opt. Express 23(3), 3589–3601 (2015).
[Crossref] [PubMed]

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, B. H.

Kim, H.

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T.

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kobelke, J.

Li, H.

Lin, W.

Liu, B.

Liu, D.

Liu, H.

Lou, S.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, Y.

Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
[Crossref]

Malnou, M.

Marques, P. V. S.

Martinez-Rios, A.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Miao, Y.

Mihailov, S. J.

Naeem, K.

Pan, Z.

Payne, D. N.

Qu, R.

Ramskov-Hansen, J. J.

Sanchez-Mondragon, J. J.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Santos, J. L.

Schuster, K.

Semenova, Y.

Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
[Crossref]

Shu, X.

Shum, P. P.

Sieg, J.

Silva, R. M.

Silva, S. O.

Simon, A.

Smelser, C. W.

Song, B.

Statkiewicz-Barabach, G.

Sun, Q.

Torres-Gomez, I.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Ulrich, R.

Urbanczyk, W.

Vischer, D.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Wandling, F.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Wang, B.

Wang, L.

Wang, M.

Wang, P.

Wo, J.

Wojcik, J.

Wu, J.

Xian, L.

Xu, F.

Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
[Crossref]

Yan, D.

Yan, T.

Yan, T. Y.

Yang, F.

Ye, Q.

Yiping, W.

Zdiarsky, W.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, L.

Q. Zhou, W. Zhang, L. Chen, T. Yan, L. Zhang, L. Wang, and B. Wang, “Fiber torsion sensor based on a twist taper in polarization-maintaining fiber,” Opt. Express 23(18), 23877–23886 (2015).
[Crossref] [PubMed]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhang, L. Y.

Zhang, W.

Zhang, W. G.

Zhang, Y.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhou, Q.

Zou, H.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Zu, P.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Appl. Opt. (3)

IEEE Photonics Technol. Lett. (5)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Y. Chen, Y. Semenova, G. Farrell, F. Xu, and Y. Lu, “A compact Sagnac loop based on a microfiber coupler for twist sensing,” IEEE Photonics Technol. Lett. 27(24), 2579–2582 (2015).
[Crossref]

IEEE Sens. J. (1)

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

IEEE Trans. Robot. Autom. (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (12)

B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
[Crossref] [PubMed]

Q. Zhou, W. Zhang, L. Chen, T. Yan, L. Zhang, L. Wang, and B. Wang, “Fiber torsion sensor based on a twist taper in polarization-maintaining fiber,” Opt. Express 23(18), 23877–23886 (2015).
[Crossref] [PubMed]

B. Huang and X. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
[Crossref] [PubMed]

B. Huang, X. Shu, and Y. Du, “Intensity modulated torsion sensor based on optical fiber reflective Lyot filter,” Opt. Express 25(5), 5081–5090 (2017).
[Crossref] [PubMed]

R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
[Crossref] [PubMed]

L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[Crossref] [PubMed]

L. Chen, W. G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L. Y. Zhang, B. Wang, and T. Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
[Crossref] [PubMed]

K. Naeem, B. H. Kim, B. Kim, and Y. Chung, “Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores,” Opt. Express 23(3), 3589–3601 (2015).
[Crossref] [PubMed]

J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
[Crossref] [PubMed]

F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
[Crossref] [PubMed]

W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
[Crossref] [PubMed]

B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic configuration of the setup for the fabrication of low birefringence SMF-based Sagnac interferometer with femtosecond laser.
Fig. 2
Fig. 2 (a) Schematic diagram of femtosecond laser inscribed straight-line waveguide in the SMF. (b) Measured normalized transmission spectrum of the SI before and after the fs laser processing.
Fig. 3
Fig. 3 Diagram of the experimental setup for torsion measurement.
Fig. 4
Fig. 4 (a) The transmission spectrum and (b) the smoothed transmission spectra of the sensor normalized with the spectrum of the supercontinuum under different applied torsions.
Fig. 5
Fig. 5 Relationship between the wavelength variation of the fringe dip and the applied torsion.
Fig. 6
Fig. 6 (a) Temperature response and (b) Strain response of the proposed torsion sensor.
Fig. 7
Fig. 7 Comparison between the experiment result (blue rhombus) and the Sinc fitting result (red line).

Tables (1)

Tables Icon

Table 1 Torsion sensitivity of several special fibers based SI

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ΔΦ=2 sin 1 ( ρ 1+ ρ 2 sinγL)
ρ= Δβ 2(ωα)
γ= 1 2 Δ β 2 +4 (ωα) 2
α=gω
ΔΦ=Δβ sin[(ωα)L] ωα
ΔB=B sin[(ωα)L] ωα
T= 1 2 (1cosΦ)
λ dip =BL/m
Δλ=ΔBL/m
Δλ= sin[(ωα)L] ωα λ dip

Metrics