Abstract

We demonstrate transmission of a probabilistically shaped polarization-division multiplexed 3-GBd 4096-QAM signal over up to 200 km of backward Raman amplified Corning® Vascade® EX2000 fiber. The 3-GBd signal with a root-raised-cosine roll-off of 0.01 has the potential to generate a spectral efficiency of 19.77 bit/s/Hz over 50 km of fiber.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission

Seiji Okamoto, Masaki Terayama, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(3) 3535-3543 (2018)

On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems

Junho Cho, Xi Chen, Sethumadhavan Chandrasekhar, and Peter Winzer
Opt. Express 26(8) 9784-9791 (2018)

Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation

Chenhui Xie, Zexin Chen, Songnian Fu, Wu Liu, Zhixue He, Lei Deng, Ming Tang, and Deming Liu
Opt. Express 26(1) 367-375 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23, 851–853 (2011).
    [Crossref]
  2. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).
  3. N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “Evaluation of real-time 8×56.25 Gb/s (400G) PAM-4 for inter-data center application over 80 km of SSMF at 1550 nm,” J. Lightwave Technol. 35, 955–962 (2017).
    [Crossref]
  4. M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optoelectronics and Communications Conference (OECC) (2011).
  5. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20, 12508–12514 (2012).
    [Crossref] [PubMed]
  6. D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
    [Crossref]
  7. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23, 4960–4969 (2015).
    [Crossref] [PubMed]
  8. Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
    [Crossref]
  9. F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
    [Crossref]
  10. M. P. Yankov, F. Da Ros, E. P. da Silva, S. Forchhammer, K. J. Larsen, L. K. Oxenløwe, M. Galili, and D. Zibar, “Constellation shaping for WDM systems using 256QAM/1024QAM with probabilistic optimization,” J. Lightwave Technol. 34, 5146–5156 (2016).
    [Crossref]
  11. S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.
  12. W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.
  13. J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).
  14. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63, 4651–4665 (2015).
    [Crossref]
  15. G. Böcherer, “Achievable rates for probabilistic shaping,” ArXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134v4 .
  16. J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in IEEE International Conference on Communications (ICC) (2015).
  17. J. Cho, L. Schmalen, and P. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference and Exhibition on Optical Communication (ECOC) (2017), paper M.2.D.
  18. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33, 4338–4352 (2015).
    [Crossref]
  19. T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightwave Technol. 34, 5063–5073 (2016).
    [Crossref]

2017 (1)

2016 (4)

2015 (3)

2014 (1)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

2012 (1)

2011 (1)

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23, 851–853 (2011).
[Crossref]

Adamiecki, A.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Agrell, E.

Alvarado, A.

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Bayvel, P.

Beppu, S.

Böcherer, G.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
[Crossref]

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightwave Technol. 34, 5063–5073 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63, 4651–4665 (2015).
[Crossref]

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Braun, R.-P.

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Buchali, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
[Crossref]

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Buhl, L. L.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Burrows, E.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Burrows, E. C.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

Chen, L.

Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
[Crossref]

Chen, M.

Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
[Crossref]

Chen, Q.

Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
[Crossref]

Chen, X.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Chen, Y.-K.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Cho, J.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in IEEE International Conference on Communications (ICC) (2015).

J. Cho, L. Schmalen, and P. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference and Exhibition on Optical Communication (ECOC) (2017), paper M.2.D.

Correa, D.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Corteselli, S.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Da Ros, F.

da Silva, E. P.

Dar, R.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Deng, R.

Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
[Crossref]

Dochhan, A.

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Eiselt, M. H.

Eiselt, N.

Elbers, J.-P.

Fehenberger, T.

Forchhammer, S.

Galili, M.

Griesser, H.

Grubb, S.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Hanik, N.

He, J.

Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
[Crossref]

Huang, M.-F.

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
[Crossref]

M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optoelectronics and Communications Conference (OECC) (2011).

Idler, W.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
[Crossref]

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Ip, E.

M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optoelectronics and Communications Conference (OECC) (2011).

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
[Crossref]

Kasai, K.

Koizumi, Y.

Lach, E.

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Larsen, K. J.

Lavery, D.

Li, B.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

Li, M.-J.

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
[Crossref]

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

Maher, R.

McKay, B.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Monroy, I. T.

Nakazawa, M.

Olmos, J. J. V.

Oxenløwe, L. K.

Pan, Y.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Qian, D.

M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optoelectronics and Communications Conference (OECC) (2011).

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
[Crossref]

Raybon, G.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Schmalen, L.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

J. Cho, L. Schmalen, and P. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference and Exhibition on Optical Communication (ECOC) (2017), paper M.2.D.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in IEEE International Conference on Communications (ICC) (2015).

Schulte, P.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63, 4651–4665 (2015).
[Crossref]

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Steiner, F.

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: An experimental demonstration,” J. Lightwave Technol. 34, 1599–1609 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63, 4651–4665 (2015).
[Crossref]

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

Toyoda, K.

Wang, T.

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
[Crossref]

Wei, J.

Winzer, P.

J. Cho, L. Schmalen, and P. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference and Exhibition on Optical Communication (ECOC) (2017), paper M.2.D.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Winzer, P. J.

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23, 851–853 (2011).
[Crossref]

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

Yankov, M. P.

Yoshida, M.

Zibar, D.

Zsigmond, S.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

IEEE J. Sel. Top. Quantum Electron. (1)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014).

IEEE Photonics J. (1)

Q. Chen, J. He, R. Deng, M. Chen, and L. Chen, “FFT-size efficient 4096-QAM OFDM for low-cost DML-based IMDD system,” IEEE Photonics J. 8, 7804010 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23, 851–853 (2011).
[Crossref]

IEEE Trans. Commun. (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63, 4651–4665 (2015).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Other (8)

G. Böcherer, “Achievable rates for probabilistic shaping,” ArXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134v4 .

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in IEEE International Conference on Communications (ICC) (2015).

J. Cho, L. Schmalen, and P. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in European Conference and Exhibition on Optical Communication (ECOC) (2017), paper M.2.D.

D. Qian, E. Ip, M.-F. Huang, M.-J. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber,” in European Conference and Exhibition on Optical Communication (ECOC) (2013), paper Th.1.C.5.
[Crossref]

M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optoelectronics and Communications Conference (OECC) (2011).

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. C. Burrows, G. Raybon, and P. J. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.3.C.1.

W. Idler, F. Buchali, L. Schmalen, E. Lach, R.-P. Braun, G. Böcherer, P. Schulte, and F. Steiner, “Field demonstration of 1 Tbit/s super-channel network using probabilistically shaped constellations,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper M1.D.2.

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM,” J. Lightwave Technol. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimentally demonstrated ultra-high SE short-reach systems.
Fig. 2
Fig. 2 Schematic of experimental setup used for ultra-high SE PS 4096-QAM transmission. EDFA: erbium-doped fiber amplifier, DAC: digital-to-analog converter, LPF: low-pass filter, I/Q: in-phase/quadrature, PDM: polarization-division multiplexing, PBS: polarization beam splitter, VOA: variable optical attenuator, ADC: analog-to-digital converter.
Fig. 3
Fig. 3 Simulated post-FEC BER of rate 0.8469 SC-LDPC code versus NGMI.
Fig. 4
Fig. 4 (a) Measured back-to-back BER versus OSNR for 3-GBd 1024-QAM signal. (b) Measured SNR versus launch power for 3-GBd 1024-QAM signal transmission over 50-km fiber with inset showing recovered constellation diagram (x-polarization) at −10 dBm launch power.
Fig. 5
Fig. 5 Measured 3-GBd PS 4096-QAM NGMI versus shaping parameter β. Potential SE takes into account 19.02% FEC overhead and a RRC roll-off of 0.01.
Fig. 6
Fig. 6 Top row: Recovered 3-GBd PS 4096-QAM constellation diagrams (x-polarization) for various transmission distances with the largest possible shaping parameters providing a measured NGMI still larger than or equal to the NGMI threshold, i.e., NGMI ≥ NGMI* = 0.8798. Bottom row: Histogram of real part of transmitted signal (x-polarization).
Fig. 7
Fig. 7 Measured potential SE versus transmission distance. SEAIR denotes measured AIR scaled by the ratio of the symbol rate (3 GBd) to the signal bandwidth (3.03 GHz), as a measure for achievable performance with ideal FEC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

GMI = H + 4 N k = 1 N i = 1 m log 2 x χ b k , i q ( y k | x ) P ( x ) x χ q ( y k | x ) P ( x ) [ bit / symbol / 2 -pol ] ,
NGMI = 1 H GMI 4 m .
R = H 4 ( 1 R c ) m [ bit / symbol / 2 -pol ] ,

Metrics