Abstract

In this paper, crossed polymer waveguides with graded-index (GI) square cores are fabricated using the soft-lithography method. We experimentally demonstrate that the fabricated GI-core crossed waveguides exhibit a much lower insertion loss than conventional step index (SI)-core counterparts, which is almost independent of the cross angle. We also show in this paper that the crossed waveguides fabricated applying organic-inorganic hybrid resins show remarkably high thermal resistance compared to the waveguides fabricated utilizing an acrylate resin and a dopant system we previously reported.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors

Yoshie Morimoto and Takaaki Ishigure
Opt. Express 24(4) 3550-3561 (2016)

Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board

Takaaki Ishigure, Keishiro Shitanda, and Yutaro Oizmi
Opt. Express 23(17) 22262-22273 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Pepeljugoski, J. Kash, F. Donay, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThX2.
    [Crossref]
  2. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
    [Crossref]
  3. F. E. Doany, C. L. Schow, B. G. Lee, R. A. Budd, C. W. Baks, C. K. Tsang, J. U. Knickerbocker, R. Dangel, B. Chan, H. Lin, C. Carver, J. Haung, J. Berry, D. Bajkowski, F. Libsch, and J. A. Kash, “Terabit/s-class optical PCB links incorporating 360-Gb/s bidirectional 850 nm parallel optical transceivers,” J. Lightwave Technol. 30(4), 560–571 (2012).
    [Crossref]
  4. R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
    [Crossref]
  5. N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightwave Technol. 32(8), 1526–1537 (2014).
    [Crossref]
  6. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
    [Crossref]
  7. T. Sakamoto, H. Tsuda, M. Hikita, T. Kagawa, K. Tateno, and C. Amano, “Optical interconnection using VCSELs and polymeric waveguide circuits,” J. Lightwave Technol. 18(11), 1487–1492 (2000).
    [Crossref]
  8. F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
    [Crossref]
  9. A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
    [Crossref]
  10. T. Ishigure, K. Shitanda, and Y. Oizmi, “Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board,” Opt. Express 23(17), 22262–22273 (2015).
    [Crossref] [PubMed]
  11. B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
    [Crossref]
  12. K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
    [Crossref]
  13. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  14. R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
    [Crossref]
  15. T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010).
    [Crossref] [PubMed]
  16. K. Abe and T. Ishigure, “Fabrication for low loss graded-index polymer crossed optical waveguide using the soft-lithography method,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), pp. 753–754.
    [Crossref]
  17. H. Nawata, “Organic-inorganic hybrid material for on-board optical interconnets and its application in optical coupling,” in Proceedings of IEEE CPMT Symposium Japan (IEEE, 2013), pp. 121–124.
    [Crossref]
  18. H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

2015 (1)

2014 (1)

2013 (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2012 (2)

2010 (2)

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010).
[Crossref] [PubMed]

2009 (1)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

2008 (1)

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

2007 (1)

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

2005 (1)

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
[Crossref]

2000 (1)

Abe, K.

K. Abe and T. Ishigure, “Fabrication for low loss graded-index polymer crossed optical waveguide using the soft-lithography method,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), pp. 753–754.
[Crossref]

Akutsu, E.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Amano, C.

Amb, C. M.

B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
[Crossref]

Baghsiahi, H.

Bajkowski, D.

Baks, C. W.

Bamiedakis, N.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightwave Technol. 32(8), 1526–1537 (2014).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Benner, A. F.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
[Crossref]

Berry, J.

Betschon, F.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Budd, R. A.

Carver, C.

Chan, B.

Choki, K.

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Craiovanc, D.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Dangel, R.

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dietrichb, K.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Doany, F. E.

Fujii, A.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Gmür, J. F. M.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Graham-Jones, J.

Halter, M.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Hashim, A.

Haung, J.

Hikita, M.

Horimoto, A.

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

Houbertz, R.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

Hyer, M. G.

B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
[Crossref]

Ignatowski, M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
[Crossref]

Igusa, M.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Ishigure, T.

T. Ishigure, K. Shitanda, and Y. Oizmi, “Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board,” Opt. Express 23(17), 22262–22273 (2015).
[Crossref] [PubMed]

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010).
[Crossref] [PubMed]

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

K. Abe and T. Ishigure, “Fabrication for low loss graded-index polymer crossed optical waveguide using the soft-lithography method,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), pp. 753–754.
[Crossref]

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

John, R. S.

B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
[Crossref]

Kagawa, T.

Kash, J. A.

Kinoshita, R.

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

Kitazoe, K.

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

Knickerbocker, J. U.

Kremmelb, J.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Kuchta, D. M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
[Crossref]

Langer, G.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

Lee, B. G.

Leeb, W.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

Libsch, F.

Lin, H.

Michlerb, M.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Milward, D.

Moriya, K.

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

Nagasawa, T.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Nawata, H.

H. Nawata, “Organic-inorganic hybrid material for on-board optical interconnets and its application in optical coupling,” in Proceedings of IEEE CPMT Symposium Japan (IEEE, 2013), pp. 121–124.
[Crossref]

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Nitta, Y.

Offrein, B. J.

Ohtsu, S.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Oizmi, Y.

Papakonstantinou, I.

Paredes, S.

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

Penty, R. V.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightwave Technol. 32(8), 1526–1537 (2014).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Pitwon, R. C. A.

Ritter, M. B.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
[Crossref]

Sahade, D. A.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Saito, Y.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Sakamoto, T.

Satzinger, V.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

Schmid, V.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

Schow, C. L.

Selviah, D. R.

Shimizu, K.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Shitanda, K.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Suzuki, T.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Swatowski, B. W.

B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
[Crossref]

Tadokoro, S.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Tateno, K.

Tsang, C. K.

Tsuda, H.

Wang, K.

Weidner, W. K.

B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
[Crossref]

White, I. H.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightwave Technol. 32(8), 1526–1537 (2014).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Yasuhara, K.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Yasui, K.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

Yatsuda, K.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

Yoshida, S.

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

IBM J. Res. Develop. (1)

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4.5), 755–775 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

J. Lightwave Technol. (4)

J. Quantum Electron. (1)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

F. Betschon, M. Michlerb, D. Craiovanc, M. Halter, K. Dietrichb, J. Kremmelb, J. F. M. Gmür, and S. Paredes, “Mass production of planar polymer waveguides and their applications,” Proc. SPIE 7607, 76070M (2010).
[Crossref]

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, and E. Akutsu, “A novel fabrication technology of a polymer optical waveguide and its application,” Proc. SPIE 6775, 677506 (2007).
[Crossref]

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]

Other (6)

K. Abe and T. Ishigure, “Fabrication for low loss graded-index polymer crossed optical waveguide using the soft-lithography method,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), pp. 753–754.
[Crossref]

H. Nawata, “Organic-inorganic hybrid material for on-board optical interconnets and its application in optical coupling,” in Proceedings of IEEE CPMT Symposium Japan (IEEE, 2013), pp. 121–124.
[Crossref]

H. Nawata, T. Nagasawa, S. Tadokoro, K. Yasui, D. A. Sahade, T. Ishigure, S. Yoshida, Y. Saito, and K. Yasuhara, “Organic-inorganic hybrid material, “SUNCONNECT®” for optical interconnects,” in Proceedings of IEEE CPMT SymposiumJapan (IEEE, 2015), pp. 126–129.

B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2014), pp. 133–134.
[Crossref]

K. Kitazoe, A. Horimoto, K. Moriya, R. Kinoshita, K. Choki, and T. Ishigure, “Ultra low crossing loss meshed waveguide based on polynorbornene for backplane architecture,” in Proceedings of IEEE Optical Interconnect Conference (IEEE, 2015), pp. 28–29.
[Crossref]

P. Pepeljugoski, J. Kash, F. Donay, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OThX2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Fabrication procedure of the imprint method.
Fig. 2
Fig. 2 Cross-section of the fabricated waveguides.
Fig. 3
Fig. 3 Observed (a) interference fringe (b) 2D refractive index profile (c) 3D refractive index profile in a fabricated GI waveguide.
Fig. 4
Fig. 4 Schematic top view of a designed crossed pattern.
Fig. 5
Fig. 5 Top-views of the fabricated crossed waveguides.
Fig. 6
Fig. 6 Cross-sections of the fabricated SI core after (a) no crossing (b) 10 crossings (c) 50 crossings.
Fig. 7
Fig. 7 Cross sections of the fabricated GI cores after (a) no crossing (b) 10 crossings (c) 50 crossings.
Fig. 8
Fig. 8 Schematic diagrams of insertion loss measurement setup (a) condition A (b) condition B.
Fig. 9
Fig. 9 NFP and EF of the 1-m long 50-µm core GI-MMF probe.
Fig. 10
Fig. 10 NFPs of fabricated waveguides with no core crossing (straight).
Fig. 11
Fig. 11 Loss dependence on the crossing number in fabricated crossed waveguides.
Fig. 12
Fig. 12 Cross angle dependence of the loss after 50 crossings (a) in fabricated waveguides and (b) comparison with the simulated results [10].
Fig. 13
Fig. 13 Insertion losses of straight waveguides fabricated using the imprint method before and after thermal resistant test assuming a solder-reflow process.
Fig. 14
Fig. 14 Insertion losses of a straight GI waveguide before and after heating.

Tables (1)

Tables Icon

Table 1 Designed parameters for crossed waveguide

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( x , y ) = n c o [ 1 2 Δ { f ( x ) + g ( y ) } ] 1 2
f ( x ) = | x a x | p , g ( y ) = | y a y | q , Δ = n c o 2 n c l 2 2 n c o
f ( x ) + g ( y ) 1
n ( x , y ) = n c l

Metrics