Abstract

Nonlinear interactions are commonly used to access to wavelengths not covered by standard laser systems. In particular, optical parametric amplification (OPA) is a powerful technique to produce broadly tunable light. However, common implementations of OPA suffer from a well-known trade-off, either achieving high efficiency for narrow spectra or inefficient conversion over a broad bandwidth. This shortcoming can be addressed using adiabatic processes. Here, we demonstrate a novel technique towards this direction, based on a temperature-controlled phase mismatch between the interacting waves. Using this approach, we demonstrate, by tailoring the temperature profile, an increase in conversion efficiency by 21%, reaching a maximum of 57%, while simultaneously expanding the bandwidth to over 300 nm. Our technique can readily enhance the performances of current OPA systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic three-wave mixing

Gil Porat and Ady Arie
J. Opt. Soc. Am. B 30(5) 1342-1351 (2013)

Adiabatic four-wave mixing frequency conversion

Eyal Bahar, Xiaoyue Ding, Asaf Dahan, Haim Suchowski, and Jeffrey Moses
Opt. Express 26(20) 25582-25601 (2018)

Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal

K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis
Opt. Express 20(27) 28544-28556 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  2. Y. Nabekawa and K. Midorikawa, “Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses,” Opt. Express 11(4), 324–338 (2003).
    [Crossref] [PubMed]
  3. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
    [Crossref] [PubMed]
  4. H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate,” Opt. Express 15(26), 18294–18299 (2007).
    [Crossref] [PubMed]
  5. O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).
  6. B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
    [Crossref] [PubMed]
  7. B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
    [Crossref] [PubMed]
  8. V. Veksler, “A new method of acceleration of relativistic particles,” J. Phys. USSR 9, 153 (1945).
  9. E. M. McMillan, “The synchrotron - a proposed high energy particle accelerator,” Phys. Rev. 68(5-6), 143–144 (1945).
    [Crossref]
  10. B. Meerson and L. Friedland, “Strong autoresonance excitation of Rydberg atoms: The Rydberg accelerator,” Phys. Rev. A 41(9), 5233–5236 (1990).
    [Crossref] [PubMed]
  11. W. K. Liu, B. Wu, and J. M. Yuan, “Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules,” Phys. Rev. Lett. 75(7), 1292–1295 (1995).
    [Crossref] [PubMed]
  12. G. Marcus, L. Friedland, and A. Zigler, “From quantum ladder climbing to classical autoresonance,” Phys. Rev. A 69(1), 013407 (2004).
    [Crossref]
  13. H. Maeda, J. Nunkaew, and T. F. Gallagher, “Classical phase locking in adiabatic rapid passage,” Phys. Rev. A 75(5), 053417 (2007).
    [Crossref]
  14. G. Manfredi and P. A. Hervieux, “Autoresonant control of the many-electron dynamics in nonparabolic quantum wells,” Appl. Phys. Lett. 91(6), 061108 (2007).
    [Crossref]
  15. L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
    [Crossref]
  16. M. A. Shamsutdinov, L. A. Kalyakin, and A. T. Kharisov, “Autoresonance in a ferromagnetic film,” Tech. Phys. 55(6), 860–865 (2010).
    [Crossref]
  17. S. V. Batalov and A. G. Shagalov, “Autoresonance control of a magnetization soliton,” Phys. Met. Metallogr. 109(1), 1–6 (2010).
    [Crossref]
  18. O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
    [Crossref] [PubMed]
  19. G. A. Brucker and G. J. Rathbone, “Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications,” Int. J. Mass Spectr. 295(3), 133–137 (2010).
    [Crossref]
  20. A. V. Ermakov and B. J. Hinch, “An electrostatic autoresonant ion trap mass spectrometer,” Rev. Sci. Instrum. 81(1), 013107 (2010).
    [Crossref] [PubMed]
  21. R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
    [Crossref] [PubMed]
  22. O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
    [Crossref]
  23. A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
    [Crossref] [PubMed]
  24. O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, “Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium,” J. Opt. Soc. Am. B 30(6), 1637–1642 (2013).
    [Crossref]
  25. O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21(2), 1623–1632 (2013).
    [Crossref] [PubMed]
  26. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008).
    [Crossref]
  27. A. Leshem, G. Meshulam, G. Porat, and A. Arie, “Adiabatic second-harmonic generation,” Opt. Lett. 41(6), 1229–1232 (2016).
    [Crossref] [PubMed]
  28. A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
    [Crossref] [PubMed]
  29. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
    [Crossref] [PubMed]
  30. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35(14), 2340–2342 (2010).
    [Crossref] [PubMed]
  31. C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20(24), 26888–26894 (2012).
    [Crossref] [PubMed]
  32. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30(6), 1551–1568 (2013).
    [Crossref]
  33. C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22(8), 9627–9658 (2014).
    [Crossref] [PubMed]
  34. P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
    [Crossref]
  35. G. Porat and A. Arie, “Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic three-wave mixing,” J. Opt. Soc. Am. B 30(5), 1342–1351 (2013).
    [Crossref]
  36. R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4-6), 523–529 (1995).
    [Crossref]
  37. K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis, “Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal,” Opt. Express 20(27), 28544–28556 (2012).
    [Crossref] [PubMed]
  38. Y. L. Lee, Y.-C. Noh, C. Jung, T. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
    [Crossref] [PubMed]
  39. K. K. Y. Wong, M. Marhic, and L. Kazovsky, “Temperature control of the gain spectrum of fiber optical parametric amplifiers,” Opt. Express 13(12), 4666–4673 (2005).
    [Crossref] [PubMed]
  40. O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A 82(2), 023820 (2010).
    [Crossref]
  41. R. Boyd, Nonlinear Optics (Academic, 2008).
  42. C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to x(2):x(2)cascading,” J. Opt. Soc. Am. B 11(12), 2434–2443 (1994).
    [Crossref]
  43. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
    [Crossref]
  44. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
    [Crossref]

2017 (3)

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
[Crossref] [PubMed]

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

2016 (1)

2014 (2)

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22(8), 9627–9658 (2014).
[Crossref] [PubMed]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

2010 (6)

O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A 82(2), 023820 (2010).
[Crossref]

M. A. Shamsutdinov, L. A. Kalyakin, and A. T. Kharisov, “Autoresonance in a ferromagnetic film,” Tech. Phys. 55(6), 860–865 (2010).
[Crossref]

S. V. Batalov and A. G. Shagalov, “Autoresonance control of a magnetization soliton,” Phys. Met. Metallogr. 109(1), 1–6 (2010).
[Crossref]

G. A. Brucker and G. J. Rathbone, “Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications,” Int. J. Mass Spectr. 295(3), 133–137 (2010).
[Crossref]

A. V. Ermakov and B. J. Hinch, “An electrostatic autoresonant ion trap mass spectrometer,” Rev. Sci. Instrum. 81(1), 013107 (2010).
[Crossref] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35(14), 2340–2342 (2010).
[Crossref] [PubMed]

2009 (2)

A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
[Crossref] [PubMed]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
[Crossref] [PubMed]

2008 (3)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008).
[Crossref]

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

2007 (4)

H. Maeda, J. Nunkaew, and T. F. Gallagher, “Classical phase locking in adiabatic rapid passage,” Phys. Rev. A 75(5), 053417 (2007).
[Crossref]

G. Manfredi and P. A. Hervieux, “Autoresonant control of the many-electron dynamics in nonparabolic quantum wells,” Appl. Phys. Lett. 91(6), 061108 (2007).
[Crossref]

L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
[Crossref]

H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate,” Opt. Express 15(26), 18294–18299 (2007).
[Crossref] [PubMed]

2006 (1)

O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).

2005 (1)

2004 (2)

R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
[Crossref] [PubMed]

G. Marcus, L. Friedland, and A. Zigler, “From quantum ladder climbing to classical autoresonance,” Phys. Rev. A 69(1), 013407 (2004).
[Crossref]

2003 (2)

2002 (2)

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27(12), 1046–1048 (2002).
[Crossref] [PubMed]

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

1995 (2)

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4-6), 523–529 (1995).
[Crossref]

W. K. Liu, B. Wu, and J. M. Yuan, “Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules,” Phys. Rev. Lett. 75(7), 1292–1295 (1995).
[Crossref] [PubMed]

1994 (2)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[Crossref]

C. R. Menyuk, R. Schiek, and L. Torner, “Solitary waves due to x(2):x(2)cascading,” J. Opt. Soc. Am. B 11(12), 2434–2443 (1994).
[Crossref]

1992 (1)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

1990 (1)

B. Meerson and L. Friedland, “Strong autoresonance excitation of Rydberg atoms: The Rydberg accelerator,” Phys. Rev. A 41(9), 5233–5236 (1990).
[Crossref] [PubMed]

1945 (2)

V. Veksler, “A new method of acceleration of relativistic particles,” J. Phys. USSR 9, 153 (1945).

E. M. McMillan, “The synchrotron - a proposed high energy particle accelerator,” Phys. Rev. 68(5-6), 143–144 (1945).
[Crossref]

Arie, A.

Aumentado, J.

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

Barak, A.

A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
[Crossref] [PubMed]

Batalov, S. V.

S. V. Batalov and A. G. Shagalov, “Autoresonance control of a magnetization soliton,” Phys. Met. Metallogr. 109(1), 1–6 (2010).
[Crossref]

Boivin, M.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Brucker, G. A.

G. A. Brucker and G. J. Rathbone, “Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications,” Int. J. Mass Spectr. 295(3), 133–137 (2010).
[Crossref]

Buryak, A. V.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Byer, R.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Caspani, L.

Cha, M.

Chang, D.

Charman, A.

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

Charman, A. E.

R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
[Crossref] [PubMed]

Clerici, M.

Dahan, A.

A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
[Crossref] [PubMed]

Di Trapani, P.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Ermakov, A. V.

A. V. Ermakov and B. J. Hinch, “An electrostatic autoresonant ion trap mass spectrometer,” Rev. Sci. Instrum. 81(1), 013107 (2010).
[Crossref] [PubMed]

Ernotte, G.

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

Fejer, M.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Fejer, M. M.

Flemens, N.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Friedland, L.

O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A 82(2), 023820 (2010).
[Crossref]

A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
[Crossref] [PubMed]

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

G. Marcus, L. Friedland, and A. Zigler, “From quantum ladder climbing to classical autoresonance,” Phys. Rev. A 69(1), 013407 (2004).
[Crossref]

R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
[Crossref] [PubMed]

B. Meerson and L. Friedland, “Strong autoresonance excitation of Rydberg atoms: The Rydberg accelerator,” Phys. Rev. A 41(9), 5233–5236 (1990).
[Crossref] [PubMed]

Gallagher, T. F.

H. Maeda, J. Nunkaew, and T. F. Gallagher, “Classical phase locking in adiabatic rapid passage,” Phys. Rev. A 75(5), 053417 (2007).
[Crossref]

Gallmann, L.

Garifullin, R. N.

L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
[Crossref]

Gavrilin, N.

Haas, R. A.

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4-6), 523–529 (1995).
[Crossref]

Heese, C.

Hervieux, P. A.

G. Manfredi and P. A. Hervieux, “Autoresonant control of the many-electron dynamics in nonparabolic quantum wells,” Appl. Phys. Lett. 91(6), 061108 (2007).
[Crossref]

Hinch, B. J.

A. V. Ermakov and B. J. Hinch, “An electrostatic autoresonant ion trap mass spectrometer,” Rev. Sci. Instrum. 81(1), 013107 (2010).
[Crossref] [PubMed]

Hong, K.-H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Ibrahim, H.

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Jeon, O.-Y.

O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).

Jin, M.-J.

O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).

Jundt, D.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Jung, C.

Kalyakin, L. A.

M. A. Shamsutdinov, L. A. Kalyakin, and A. T. Kharisov, “Autoresonance in a ferromagnetic film,” Tech. Phys. 55(6), 860–865 (2010).
[Crossref]

L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
[Crossref]

Kärtner, F. X.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[Crossref]

Katz, M.

A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
[Crossref] [PubMed]

Kazovsky, L.

Keller, U.

Kharisov, A. T.

M. A. Shamsutdinov, L. A. Kalyakin, and A. T. Kharisov, “Autoresonance in a ferromagnetic film,” Tech. Phys. 55(6), 860–865 (2010).
[Crossref]

Kim, B.-J.

H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate,” Opt. Express 15(26), 18294–18299 (2007).
[Crossref] [PubMed]

O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).

Ko, D.-K.

Krogen, P.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Kurimura, S.

Lamhot, Y.

A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
[Crossref] [PubMed]

Langrock, C.

Laramée, A.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Lassonde, P.

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

Lebrun, G.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Lee, J.

Lee, Y. L.

Légaré, F.

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Leshem, A.

Levanon, A.

A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
[Crossref] [PubMed]

Liang, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Lim, H.-H.

H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate,” Opt. Express 15(26), 18294–18299 (2007).
[Crossref] [PubMed]

O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).

Lin, Y. W.

Lindberg, R.

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

Lindberg, R. R.

R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
[Crossref] [PubMed]

Liu, W. K.

W. K. Liu, B. Wu, and J. M. Yuan, “Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules,” Phys. Rev. Lett. 75(7), 1292–1295 (1995).
[Crossref] [PubMed]

Maeda, H.

H. Maeda, J. Nunkaew, and T. F. Gallagher, “Classical phase locking in adiabatic rapid passage,” Phys. Rev. A 75(5), 053417 (2007).
[Crossref]

Magel, G.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Manfredi, G.

G. Manfredi and P. A. Hervieux, “Autoresonant control of the many-electron dynamics in nonparabolic quantum wells,” Appl. Phys. Lett. 91(6), 061108 (2007).
[Crossref]

Marcus, G.

G. Marcus, L. Friedland, and A. Zigler, “From quantum ladder climbing to classical autoresonance,” Phys. Rev. A 69(1), 013407 (2004).
[Crossref]

Marhic, M.

Mayer, B. W.

McMillan, E. M.

E. M. McMillan, “The synchrotron - a proposed high energy particle accelerator,” Phys. Rev. 68(5-6), 143–144 (1945).
[Crossref]

Meerson, B.

B. Meerson and L. Friedland, “Strong autoresonance excitation of Rydberg atoms: The Rydberg accelerator,” Phys. Rev. A 41(9), 5233–5236 (1990).
[Crossref] [PubMed]

Menyuk, C. R.

Meshulam, G.

Midorikawa, K.

Morandotti, R.

Moses, J.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Naaman, O.

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

Nabekawa, Y.

Noh, Y.-C.

Nunkaew, J.

H. Maeda, J. Nunkaew, and T. F. Gallagher, “Classical phase locking in adiabatic rapid passage,” Phys. Rev. A 75(5), 053417 (2007).
[Crossref]

Oron, D.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008).
[Crossref]

Ozaki, T.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Pandiyan, K.

Penn, G.

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

Phillips, C. R.

Poitras, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Porat, G.

Prabhudesai, V.

Prakash, O.

Raciukaitis, G.

Rathbone, G. J.

G. A. Brucker and G. J. Rathbone, “Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications,” Int. J. Mass Spectr. 295(3), 133–137 (2010).
[Crossref]

Regelskis, K.

Rhee, B. K.

Ro, J. H.

Salimov, R. K.

L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
[Crossref]

Schiek, R.

Schmidt, B. E.

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Segev, M.

A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
[Crossref] [PubMed]

Shagalov, A. G.

S. V. Batalov and A. G. Shagalov, “Autoresonance control of a magnetization soliton,” Phys. Met. Metallogr. 109(1), 1–6 (2010).
[Crossref]

Shamsutdinov, M. A.

M. A. Shamsutdinov, L. A. Kalyakin, and A. T. Kharisov, “Autoresonance in a ferromagnetic film,” Tech. Phys. 55(6), 860–865 (2010).
[Crossref]

L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
[Crossref]

Siddiqi, I.

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

Silberberg, Y.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008).
[Crossref]

Skryabin, D. V.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Suchowski, H.

A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
[Crossref] [PubMed]

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008).
[Crossref]

Taira, T.

Thiré, N.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Torner, L.

Trillo, S.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Veksler, V.

V. Veksler, “A new method of acceleration of relativistic particles,” J. Phys. USSR 9, 153 (1945).

Vidal, F.

Wong, K. K. Y.

Wu, B.

W. K. Liu, B. Wu, and J. M. Yuan, “Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules,” Phys. Rev. Lett. 75(7), 1292–1295 (1995).
[Crossref] [PubMed]

Wurtele, J.

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

Wurtele, J. S.

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
[Crossref] [PubMed]

Yaakobi, O.

O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21(2), 1623–1632 (2013).
[Crossref] [PubMed]

O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, “Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium,” J. Opt. Soc. Am. B 30(6), 1637–1642 (2013).
[Crossref]

O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A 82(2), 023820 (2010).
[Crossref]

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

Yu, N. E.

Yu, T.

Yuan, J. M.

W. K. Liu, B. Wu, and J. M. Yuan, “Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules,” Phys. Rev. Lett. 75(7), 1292–1295 (1995).
[Crossref] [PubMed]

Želudevicius, J.

Zigler, A.

G. Marcus, L. Friedland, and A. Zigler, “From quantum ladder climbing to classical autoresonance,” Phys. Rev. A 69(1), 013407 (2004).
[Crossref]

Appl. Phys. Lett. (1)

G. Manfredi and P. A. Hervieux, “Autoresonant control of the many-electron dynamics in nonparabolic quantum wells,” Appl. Phys. Lett. 91(6), 061108 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[Crossref]

Int. J. Mass Spectr. (1)

G. A. Brucker and G. J. Rathbone, “Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications,” Int. J. Mass Spectr. 295(3), 133–137 (2010).
[Crossref]

J. Korean Phys. Soc. (1)

O.-Y. Jeon, M.-J. Jin, H.-H. Lim, B.-J. Kim, and M. Cha, “Broadband optical parametric generation in the telecommunication band and simultaneous RGB generation by quasi-phase-matched parametric conversion processes,” J. Korean Phys. Soc. 49, S589–S591 (2006).

J. Opt. Soc. Am. B (4)

J. Phys. Condens. Matter (1)

A. Dahan, A. Levanon, M. Katz, and H. Suchowski, “Ultrafast adiabatic second harmonic generation,” J. Phys. Condens. Matter 29(8), 084004 (2017).
[Crossref] [PubMed]

J. Phys. USSR (1)

V. Veksler, “A new method of acceleration of relativistic particles,” J. Phys. USSR 9, 153 (1945).

Nat. Commun. (1)

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11(4), 222–226 (2017).
[Crossref]

Opt. Commun. (1)

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4-6), 523–529 (1995).
[Crossref]

Opt. Express (9)

K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis, “Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal,” Opt. Express 20(27), 28544–28556 (2012).
[Crossref] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

K. K. Y. Wong, M. Marhic, and L. Kazovsky, “Temperature control of the gain spectrum of fiber optical parametric amplifiers,” Opt. Express 13(12), 4666–4673 (2005).
[Crossref] [PubMed]

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22(8), 9627–9658 (2014).
[Crossref] [PubMed]

C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20(24), 26888–26894 (2012).
[Crossref] [PubMed]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009).
[Crossref] [PubMed]

O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21(2), 1623–1632 (2013).
[Crossref] [PubMed]

H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate,” Opt. Express 15(26), 18294–18299 (2007).
[Crossref] [PubMed]

Y. Nabekawa and K. Midorikawa, “Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses,” Opt. Express 11(4), 324–338 (2003).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Met. Metallogr. (2)

S. V. Batalov and A. G. Shagalov, “Autoresonance control of a magnetization soliton,” Phys. Met. Metallogr. 109(1), 1–6 (2010).
[Crossref]

L. A. Kalyakin, M. A. Shamsutdinov, R. N. Garifullin, and R. K. Salimov, “Autoresonance parametric excitation of localized oscillations of magnetization in a ferromagnet by an AC field of a variable frequency,” Phys. Met. Metallogr. 104(2), 107–120 (2007).
[Crossref]

Phys. Plasmas (1)

O. Yaakobi, L. Friedland, R. Lindberg, A. Charman, G. Penn, and J. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15(3), 032105 (2008).
[Crossref]

Phys. Rep. (1)

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Phys. Rev. (1)

E. M. McMillan, “The synchrotron - a proposed high energy particle accelerator,” Phys. Rev. 68(5-6), 143–144 (1945).
[Crossref]

Phys. Rev. A (5)

B. Meerson and L. Friedland, “Strong autoresonance excitation of Rydberg atoms: The Rydberg accelerator,” Phys. Rev. A 41(9), 5233–5236 (1990).
[Crossref] [PubMed]

G. Marcus, L. Friedland, and A. Zigler, “From quantum ladder climbing to classical autoresonance,” Phys. Rev. A 69(1), 013407 (2004).
[Crossref]

H. Maeda, J. Nunkaew, and T. F. Gallagher, “Classical phase locking in adiabatic rapid passage,” Phys. Rev. A 75(5), 053417 (2007).
[Crossref]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008).
[Crossref]

O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A 82(2), 023820 (2010).
[Crossref]

Phys. Rev. Lett. (4)

A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103(12), 123901 (2009).
[Crossref] [PubMed]

R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93(5), 055001 (2004).
[Crossref] [PubMed]

O. Naaman, J. Aumentado, L. Friedland, J. S. Wurtele, and I. Siddiqi, “Phase-locking transition in a chirped superconducting Josephson resonator,” Phys. Rev. Lett. 101(11), 117005 (2008).
[Crossref] [PubMed]

W. K. Liu, B. Wu, and J. M. Yuan, “Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules,” Phys. Rev. Lett. 75(7), 1292–1295 (1995).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. V. Ermakov and B. J. Hinch, “An electrostatic autoresonant ion trap mass spectrometer,” Rev. Sci. Instrum. 81(1), 013107 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

B. E. Schmidt, P. Lassonde, G. Ernotte, M. Clerici, R. Morandotti, H. Ibrahim, and F. Légaré, “Decoupling Frequencies, Amplitudes and Phases in Nonlinear Optics,” Sci. Rep. 7(1), 7861 (2017).
[Crossref] [PubMed]

Tech. Phys. (1)

M. A. Shamsutdinov, L. A. Kalyakin, and A. T. Kharisov, “Autoresonance in a ferromagnetic film,” Tech. Phys. 55(6), 860–865 (2010).
[Crossref]

Other (1)

R. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Simulation of the temperature variation inside the crystal and the phase-mismatch as a function of the position in a 5-cm-long LBO crystal with λ 3 =775nm and λ 2 =1390nm for a) two heaters on the opposite sides of the crystal set to 110 and 176° C respectively, leading to an “exponential” temperature distribution and; b) four equidistant heaters along the crystal set to 110, 132, 154, and 176° C respectively, leading to a “linear” temperature distribution.
Fig. 2
Fig. 2 a) Simulated conversion efficiency as a function of the wavelength for three temperature distributions inside the LBO crystal: exponential (red line) and linear (green line) temperature gradients with a contrast of 60 ° C, (100° C - 160° C) are compared to the constant temperature of 130 ° C (black line); b) Simulated conversion efficiency as a function of the wavelength for different linear temperature distributions inside the LBO crystal. Temperature contrasts between 40° C (110° C - 150° C) and 60° C (100° C - 160° C) feature the highest conversion efficiency and bandwidth.
Fig. 3
Fig. 3 a) Schematic of the experimental setup. A pump and signal waves are injected through the left facet of an LBO crystal with a temperature gradient applied along its length. Upon exiting the crystal, the pump wave is blocked by a longpass filter, whereas the amplified signal wave is detected via a photodiode. b) The temperature inside the crystal is controlled by heating four equidistantly-placed spots, using thermistors positioned in direct contact with the crystal surface.
Fig. 4
Fig. 4 a) Measured conversion efficiency as a function of the seed wavelength for the exponential and linear temperature gradients (centered around 130° C, with a contrast of 60° C); b) Measured conversion efficiency as a function of the seed wavelength for the linear temperature distributions (centered around 130° C, and with a varying temperature contrast).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

j A 1,2 z + ω 1,2 n 1,2 c χ eff A 2,1 * A 3 exp{ +j 0 z Δk(ζ)dζ }=0 j A 3 z + ω 3 n 3 c χ eff A 1 A 2 exp{ j 0 z Δk(ζ)dζ }=0 Δk(z)= k 3 (z)k (z) 1 k 2 (z), k 1,2,3 (z)= 2π λ 1,2,3 n 1,2,3 (z)
l=1/[ ( η 1 η 2 ) 1/2 | A 3,0 | ]= [ ( c ε 0 8 π 2 ) n 1,avg n 2,avg n 3,0 λ 1 λ 2 d eff 2 I 3,0 ] 1/2
| Δ k ini |,| Δ k fin |> 2 l
| Δ k fin Δ k ini | L l 2
j A 1,2 z + 1 2 k 1,2 2 A 1,2 x 2 + 1 2 k 1,2 2 A 1,2 y 2 +j 1 v 1,2 A 1,2 t + ω 1,2 n 1,2 c χ eff A 2,1 * A 3 exp{ +j 0 z Δk(ζ)dζ }=0 j A 3 z + 1 2 k 3 2 A 3 x 2 + 1 2 k 3 2 A 3 y 2 +j 1 v 3 A 3 t + ω 3 n 3 c χ eff A 1 A 2 exp{ j 0 z Δk(ζ)dζ }=0 Δk= k 3 k 1 k 2 , k 1,2,3 = 2π λ 1,2,3 n 1,2,3
η= W s+i,pump W s,nopump W p
ρC T t ( kT )=0

Metrics