Abstract

We demonstrate a nanosecond 560 nm pulse source based on frequency-doubling the output of a combined Yb-Raman fiber amplifier, achieving a pulse energy of 2.0 µJ with a conversion efficiency of 32% from the 976 nm pump light. By introducing a continuous-wave 1120 nm signal before the cladding pumped amplifier of a pulsed Yb:fiber master oscillator power amplifier system operating at 1064 nm, efficient conversion to 1120 nm occurs within the fiber amplifier due to stimulated Raman scattering. The output of the combined Yb-Raman amplifier is frequency-doubled to 560 nm using a periodically poled lithium tantalate crystal with a conversion efficiency of 47%, resulting in an average power of 3.0 W at a repetition rate of 1.5 MHz. The 560 nm pulse duration of 1.7 ns and the near diffraction-limited beam quality (M2≤1.18) make this source ideally suited to biomedical imaging applications such as optical-resolution photoacoustic microscopy and stimulated emission depletion microscopy.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm

T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor
Opt. Express 23(12) 15728-15733 (2015)

Duration-tunable picosecond source at 560  nm with watt-level average power

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor
Opt. Lett. 40(13) 3085-3088 (2015)

High power Yb-Raman combined nonlinear fiber amplifier

Hanwei Zhang, Hu Xiao, Pu Zhou, Xiaolin Wang, and Xiaojun Xu
Opt. Express 22(9) 10248-10255 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33, 929–931 (2008).
    [Crossref] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  3. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
    [Crossref] [PubMed]
  4. P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
    [Crossref]
  5. B. R. Rankin and S. W. Hell, “STED microscopy with a MHz pulsed stimulated-Raman-scattering source,” Opt. Express 17, 15679–15684 (2009).
    [Crossref] [PubMed]
  6. E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
    [Crossref]
  7. T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Duration-tunable picosecond source at 560 nm with watt-level average power,” Opt. Lett. 40, 3085–3088 (2015).
    [Crossref] [PubMed]
  8. T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm,” Opt. Express 23, 15728–15733 (2015).
    [Crossref] [PubMed]
  9. A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
    [Crossref]
  10. T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, and J. R. Taylor, “Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh1A.3.
  11. L. Xu, S. Alam, Q. Kang, D. P. Shepherd, and D. J. Richardson, “Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible,” Opt. Express 25, 351–356 (2017).
    [Crossref] [PubMed]
  12. T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
    [Crossref]
  13. M. Dyba and S. W. Hell, “Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission,” Appl. Opt. 42, 5123–5129 (2003).
    [Crossref] [PubMed]
  14. T. H. Runcorn, R. T. Murray, and J. R. Taylor, “Microjoule Nanosecond 560 nm Source by SHG of a Combined Yb-Raman Fiber Amplifier,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATu1A.7.
  15. M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
    [Crossref]
  16. M. Eibl, S. Karpf, H. Hakert, T. Blömker, J. P. Kolb, C. Jirauschek, and R. Huber, “Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification,” Opt. Lett. 42, 4406–4409 (2017).
    [Crossref] [PubMed]
  17. S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
    [Crossref]

2018 (1)

T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
[Crossref]

2017 (2)

2015 (3)

2014 (1)

E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
[Crossref]

2011 (1)

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

2009 (1)

2008 (2)

2006 (1)

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

2003 (1)

2002 (1)

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

1994 (1)

Alam, S.

Avdokhin, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Blömker, T.

Codemard, C.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Dupriez, P.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Dyba, M.

Eibl, M.

Erbert, G.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Erdmann, R.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Farrell, C.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Furukawa, Y.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Gapontsev, V.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Görlitz, F. G.

T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
[Crossref]

Hakert, H.

Hell, S. W.

Hu, S.

Huber, R.

Ibsen, M.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Inbar, E.

E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
[Crossref]

Ito, H.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Jeong, Y.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Jirauschek, C.

Kadwani, P.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Kang, Q.

Karpf, S.

Kastrup, L.

Kelleher, E. J. R.

T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
[Crossref]

T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm,” Opt. Express 23, 15728–15733 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Duration-tunable picosecond source at 560 nm with watt-level average power,” Opt. Lett. 40, 3085–3088 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, and J. R. Taylor, “Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh1A.3.

Kim, J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Kitamura, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Kolb, J. P.

Lasri, J.

E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
[Crossref]

Lauritsen, K.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Legg, T.

Maslov, K.

Murray, R. T.

T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
[Crossref]

T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm,” Opt. Express 23, 15728–15733 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Duration-tunable picosecond source at 560 nm with watt-level average power,” Opt. Lett. 40, 3085–3088 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, and J. R. Taylor, “Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh1A.3.

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “Microjoule Nanosecond 560 nm Source by SHG of a Combined Yb-Raman Fiber Amplifier,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATu1A.7.

Myasnikov, D.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Nakamura, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Nakamura, M.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Nilsson, J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Paschke, K.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Platonov, N.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Popov, S. V.

Rankin, B. R.

Richardson, D. J.

L. Xu, S. Alam, Q. Kang, D. P. Shepherd, and D. J. Richardson, “Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible,” Opt. Express 25, 351–356 (2017).
[Crossref] [PubMed]

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Riecke, S. M.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Rittweger, E.

Rowen, E. E.

E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
[Crossref]

Runcorn, T. H.

T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
[Crossref]

T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm,” Opt. Express 23, 15728–15733 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Duration-tunable picosecond source at 560 nm with watt-level average power,” Opt. Lett. 40, 3085–3088 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, and J. R. Taylor, “Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh1A.3.

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “Microjoule Nanosecond 560 nm Source by SHG of a Combined Yb-Raman Fiber Amplifier,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATu1A.7.

Sahu, J. K.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

Samartsev, I.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Schwertfeger, S.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Shepherd, D. P.

Takekawa, S.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Taylor, J. R.

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Duration-tunable picosecond source at 560 nm with watt-level average power,” Opt. Lett. 40, 3085–3088 (2015).
[Crossref] [PubMed]

T. H. Runcorn, T. Legg, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm,” Opt. Express 23, 15728–15733 (2015).
[Crossref] [PubMed]

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “Microjoule Nanosecond 560 nm Source by SHG of a Combined Yb-Raman Fiber Amplifier,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATu1A.7.

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, and J. R. Taylor, “Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh1A.3.

Terabe, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Usami, T.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

Vashdi, G.

E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
[Crossref]

Vaupel, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Wang, L. V.

Wenzel, H.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Wichmann, J.

Wildanger, D.

Xu, L.

Yusim, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Zhang, H. F.

Appl. Opt. (1)

Ferroelectrics (1)

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-stoichiometric LiTaO3 for bulk quasi-phasematched devices,” Ferroelectrics 273, 199–204 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. H. Runcorn, F. G. Görlitz, R. T. Murray, and E. J. R. Kelleher, “Visible Raman-shifted Fiber Lasers for Biophotonic Applications,” IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (3)

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[Crossref]

E. E. Rowen, G. Vashdi, J. Lasri, and E. Inbar, “A scalable high-power yellow laser source based on frequency doubling of a combined Yb-Raman fiber amplifier,” Proc. SPIE 8961, 89611P (2014).
[Crossref]

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-CW single-mode green and UV fiber lasers,” Proc. SPIE 9347, 934704 (2015).
[Crossref]

Other (2)

T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, and J. R. Taylor, “Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper ATh1A.3.

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “Microjoule Nanosecond 560 nm Source by SHG of a Combined Yb-Raman Fiber Amplifier,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper ATu1A.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the frequency-doubled combined Yb-Raman amplifier system. LD, laser diode; ISO, optical isolator; WDM, wavelength division multiplexer; BPF, bandpass filter; TAP, tap coupler; MM LD, multimode laser diode; MMPC, multimode pump combiner; CLS, cladding light stripper; AS, aspheric lens; HWP, half waveplate; PCX, plano-convex lens; PPLT, periodically poled lithium tantalate; DM, dichroic mirror.
Fig. 2
Fig. 2 (a) Combined Yb-Raman amplifier output power (blue points) and 1120 nm amplified pulse proportion (green points) as a function of 976 nm pump power with a linear regression (red line) revealing a slope efficiency of 69%. Green line is a guide for the eye. (b) Optical spectrum (blue line) of the amplifier output at a pump power of 9.4 W with the integrated spectral power (orange line). Inset: optical spectrum of the 1120 nm seed (gray line) and amplifier output (blue line).
Fig. 3
Fig. 3 (a) Second-harmonic average power at 560 nm (blue points) and conversion efficiency (orange points) as a function of combined Yb-Raman fiber amplifier output power. Inset: 560 nm average power stability. (b) Second-harmonic average power at 560 nm (blue points) and optical efficiency (green points) as a function of 976 nm amplifier pump power. Inset: optical spectrum of the second-harmonic. Lines are a guide for the eye.
Fig. 4
Fig. 4 560 nm beam quality measurement based on a Gaussian beam caustic fit (lines) to the measured beam diameter (points) through the focus of a lens. Inset: CCD camera image of the collimated 560 nm beam.
Fig. 5
Fig. 5 Sampling optical oscilloscope traces of the 1064 nm laser diode seed pulses (a), 1064 nm pulses at the second pre-amplifier tap (b), filtered 1120 nm amplifier output at maximum pump power (c) and the frequency-doubled pulses (d) at a pulse repetition rate of 1.5 MHz.

Metrics