Abstract

Lithium niobate’s use in integrated optics is somewhat hampered by the lack of a capability to create low loss waveguides with strong lateral index confinement. Thin film single crystal lithium niobate is a promising platform for future applications in integrated optics due to the availability of a strong electro-optic effect in this material coupled with the possibility of strong vertical index confinement. However, sidewalls of etched waveguides are typically rough in most etching procedures, exacerbating propagation losses. In this paper, we propose a fabrication method that creates significantly smoother ridge waveguides. This involves argon ion milling and subsequent gas clustered ion beam smoothening. We have fabricated and characterized ultra-low loss waveguides with this technique, with propagation losses as low as 0.3 dB/cm at 1.55 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method

Ryo Takigawa, Eiji Higurashi, Tetsuya Kawanishi, and Tanemasa Asano
Opt. Express 22(22) 27733-27738 (2014)

Ultra-low loss photonic circuits in lithium niobate on insulator

Inna Krasnokutska, Jean-Luc J. Tambasco, Xijun Li, and Alberto Peruzzo
Opt. Express 26(2) 897-904 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, J. F. Young, and R. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt,” J. Appl. Phys. 41(6), 2320–2325 (1970).
    [Crossref]
  2. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
    [Crossref]
  3. C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, Inc., 1998).
  4. M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  5. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  6. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  7. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  8. F. Lenzini, S. Kasture, B. Haylock, and M. Lobino, “Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate,” Opt. Express 23(2), 1748–1756 (2015).
    [Crossref] [PubMed]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  10. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High Performance InP-Based Photonic ICs,” J. Lightwave Technol. 29(4), 554–570 (2011).
    [Crossref]
  11. T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
    [Crossref]
  12. S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
    [Crossref]
  13. S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Integrated nonlinear optics: lithium niobate-on-insulator waveguides and resonators,” in SPIE OPTO, (SPIE, 2017), 8.
  14. I. Yamada and N. Toyoda, “Summary of recent research on gas cluster ion beam process technology,” Nuclear Instrum. Methods Phys. Res. Section B 232(1-4), 195–199 (2005).
    [Crossref]
  15. E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
    [Crossref]
  16. A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
    [Crossref]
  17. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
    [Crossref]
  18. S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Loss characterization of waveguides in lithium niobate on insulator,” in 2016 International Conference on Optical MEMS and Nanophotonics (OMN) (2016), pp. 1–2.
    [Crossref]
  19. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
    [Crossref] [PubMed]
  20. T. Keisuke and S. Toshiaki, “Fabrication of 0.7 µm 2 ridge waveguide in ion-sliced LiNbO 3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54(12), 128002 (2015).
    [Crossref]
  21. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
    [Crossref]
  22. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [Crossref] [PubMed]

2016 (3)

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

2013 (1)

2011 (2)

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High Performance InP-Based Photonic ICs,” J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2005 (1)

I. Yamada and N. Toyoda, “Summary of recent research on gas cluster ion beam process technology,” Nuclear Instrum. Methods Phys. Res. Section B 232(1-4), 195–199 (2005).
[Crossref]

2000 (1)

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

1998 (1)

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1997 (1)

1996 (1)

T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
[Crossref]

1985 (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
[Crossref]

1970 (1)

R. L. Byer, J. F. Young, and R. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt,” J. Appl. Phys. 41(6), 2320–2325 (1970).
[Crossref]

Arndt, F.

T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
[Crossref]

Baida, F. I.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Bakhru, H.

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Benattou, S.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bernal, M. P.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Bernal, M.-P.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bettiol, A. A.

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

Byer, R. L.

R. L. Byer, J. F. Young, and R. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt,” J. Appl. Phys. 41(6), 2320–2325 (1970).
[Crossref]

Cai, L.

Calero, V.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Cheung, E. J. H.

S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Loss characterization of waveguides in lithium niobate on insulator,” in 2016 International Conference on Optical MEMS and Nanophotonics (OMN) (2016), pp. 1–2.
[Crossref]

Chiles, J.

Coldren, L. A.

Courjal, N.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Cross, L. E.

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Danner, A. J.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Loss characterization of waveguides in lithium niobate on insulator,” in 2016 International Conference on Optical MEMS and Nanophotonics (OMN) (2016), pp. 1–2.
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Fathpour, S.

Feigelson, R. S.

R. L. Byer, J. F. Young, and R. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt,” J. Appl. Phys. 41(6), 2320–2325 (1970).
[Crossref]

Fischer, T. Z. U.

T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
[Crossref]

Galvanauskas, A.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Gerthoffer, A.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guyot, C.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Guzzon, R. S.

Haylock, B.

Hu, H.

Jiang, Y.

Johansson, L.

Jundt, D. H.

Kasture, S.

Keisuke, T.

T. Keisuke and S. Toshiaki, “Fabrication of 0.7 µm 2 ridge waveguide in ion-sliced LiNbO 3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54(12), 128002 (2015).
[Crossref]

Khan, S.

Kip, D.

Krishnamachari, U.

Kropp, J. R.

T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
[Crossref]

Kumar, A.

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Lenzini, F.

Levy, M.

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Li, S.

Liu, R.

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lobino, M.

Lu, H.-H.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Ma, J.

Meade, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Ndao, A.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Nicholes, S. C.

Norberg, E. J.

Norris, T. B.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Petermann, K.

T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
[Crossref]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Qiu, W.

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Rabiei, P.

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Ristic, S.

Rüter, C. E.

Saha, S. S.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

Siew, S. Y.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Loss characterization of waveguides in lithium niobate on insulator,” in 2016 International Conference on Optical MEMS and Nanophotonics (OMN) (2016), pp. 1–2.
[Crossref]

Suntsov, S.

Teng, J. H.

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

Teo, E. J.

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

Toshiaki, S.

T. Keisuke and S. Toshiaki, “Fabrication of 0.7 µm 2 ridge waveguide in ion-sliced LiNbO 3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54(12), 128002 (2015).
[Crossref]

Toyoda, N.

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

I. Yamada and N. Toyoda, “Summary of recent research on gas cluster ion beam process technology,” Nuclear Instrum. Methods Phys. Res. Section B 232(1-4), 195–199 (2005).
[Crossref]

Tsang, M.

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Loss characterization of waveguides in lithium niobate on insulator,” in 2016 International Conference on Optical MEMS and Nanophotonics (OMN) (2016), pp. 1–2.
[Crossref]

Ulliac, G.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Volk, M. F.

Walker, R. G.

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
[Crossref]

Wang, Y.

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Yamada, I.

I. Yamada and N. Toyoda, “Summary of recent research on gas cluster ion beam process technology,” Nuclear Instrum. Methods Phys. Res. Section B 232(1-4), 195–199 (2005).
[Crossref]

Yang, C.

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

Young, J. F.

R. L. Byer, J. F. Young, and R. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt,” J. Appl. Phys. 41(6), 2320–2325 (1970).
[Crossref]

Appl. Phys. Lett. (2)

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

M. Levy, R. Liu, L. E. Cross, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, “Nanoscale smoothing of plasmonic films and structures using gas cluster ion beam irradiation,” Appl. Phys., A Mater. Sci. Process. 117(2), 719–723 (2014).
[Crossref]

Electron. Lett. (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Z. U. Fischer, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photonics Technol. Lett. 8(5), 647–648 (1996).
[Crossref]

S. Y. Siew, S. S. Saha, M. Tsang, and A. J. Danner, “Rib Microring Resonators in Lithium Niobate on Insulator,” IEEE Photonics Technol. Lett. 28(5), 573–576 (2016).
[Crossref]

J. Appl. Phys. (1)

R. L. Byer, J. F. Young, and R. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt,” J. Appl. Phys. 41(6), 2320–2325 (1970).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, S. Benattou, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Keisuke and S. Toshiaki, “Fabrication of 0.7 µm 2 ridge waveguide in ion-sliced LiNbO 3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54(12), 128002 (2015).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Nuclear Instrum. Methods Phys. Res. Section B (1)

I. Yamada and N. Toyoda, “Summary of recent research on gas cluster ion beam process technology,” Nuclear Instrum. Methods Phys. Res. Section B 232(1-4), 195–199 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (2)

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M. P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M.-P. Bernal, and N. Courjal, “Strong reduction of propagation losses in LiNbO3 ridge waveguides,” Opt. Mater. 38, 37–41 (2014).
[Crossref]

Other (3)

S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Loss characterization of waveguides in lithium niobate on insulator,” in 2016 International Conference on Optical MEMS and Nanophotonics (OMN) (2016), pp. 1–2.
[Crossref]

C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, Inc., 1998).

S. Y. Siew, E. J. H. Cheung, M. Tsang, and A. J. Danner, “Integrated nonlinear optics: lithium niobate-on-insulator waveguides and resonators,” in SPIE OPTO, (SPIE, 2017), 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ridge waveguide structure. The blue regions represent single crystal lithium niobate. The width w of the waveguide is experimentally varied from 1 µm to 7 µm, whereas the height h is fixed at 700 nm. Due to etching processes, the sidewall tends to have an angle.
Fig. 2
Fig. 2 Theoretical TE mode profiles solved via finite element solving in COMSOL. On the right shows an angled waveguide with an angle of 45 degrees and a top waveguide width of 2 µm. On the right shows an equivalent “straight” waveguide with the same area. The top represents the TE0 mode, whereas the bottom represents the TE mode.
Fig. 3
Fig. 3 Simulated effective refractive index depending upon the geometry of the waveguide for the first few TE & TM modes. The closed symbols represent the “angled” case, whereas the open symbols represent the “straight” case. The results are very similar for the fundamental modes.
Fig. 4
Fig. 4 Argon ion milling setup. Argon ions are first striped of their electron using RF power, and subsequently accelerated via a ion optics grid. Before striking the sample, the argon ions are neutralized with a lower filament neutralizer (LFN) which helps to prevent charging of the sample.
Fig. 5
Fig. 5 Gas Clustered Ion Beam smoothening setup. It is similar to conventional argon ion milling, but with a modified argon source, includes an analysis magnet to filter out monomer beams and only accelerates clusters of chosen sizes.
Fig. 6
Fig. 6 SEM images of a 5 µm waveguide showing before and after the GCIB operation.
Fig. 7
Fig. 7 (a) AFM of the side of the a 5 µm waveguide, with (b) showing a zoomed in view (with a 1st order flatten). The measured roughness over the whole of (b) of Rq is 8.3 nm and Ra is 6.9 nm.
Fig. 8
Fig. 8 Transmission and reflection (TE) spectra at 1,550 nm of a 7 µm waveguide, showing the fitted curve.
Fig. 9
Fig. 9 Propagation loss vs Waveguide Width for both TE and TM, calculated via Fabry Perot resonance measurement data. Other results in literature are indicated, and the polarization from these results are indicated if available.

Tables (1)

Tables Icon

Table 1 Comparison of Thin Film Lithium Niobate Waveguides

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I transmission I initial = ( 1R ) 2 G ( 1RG ) 2 +4RG sin 2 ( δ/2 ) I reflection I initial = R (1G) 2 +4RG sin 2 ( δ/2 ) ( 1RG ) 2 +4RG sin 2 ( δ/2 ) ,
α= 1 L ln( R 1+ζ 1ζ ),

Metrics