Abstract

We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG*01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M2-value of 2.16 which is close to the theoretical value for the LG*01 doughnut mode were measured.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frontiers in passively mode-locked high-power thin disk laser oscillators

Cyrill R. E. Baer, Oliver H. Heckl, Clara J. Saraceno, Cinia Schriber, Christian Kränkel, Thomas Südmeyer, and Ursula Keller
Opt. Express 20(7) 7054-7065 (2012)

Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion

Dominik Bauer, Ivo Zawischa, Dirk H. Sutter, Alexander Killi, and Thomas Dekorsy
Opt. Express 20(9) 9698-9704 (2012)

Passively mode-locked Yb:CaF2 thin-disk laser

Benjamin Dannecker, Xavier Délen, Katrin S. Wentsch, Birgit Weichelt, Clemens Hönninger, Andreas Voss, Marwan Abdou Ahmed, and Thomas Graf
Opt. Express 22(19) 22278-22284 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: From mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [Crossref]
  3. R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
    [Crossref]
  4. T. Häcker, “Adapted polarization for sheet metal cutting,” in AKL International Laser Technology Congress (2016).
  5. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [Crossref] [PubMed]
  6. C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
    [Crossref] [PubMed]
  7. E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
    [Crossref] [PubMed]
  8. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
    [Crossref]
  9. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [Crossref] [PubMed]
  10. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
    [Crossref] [PubMed]
  11. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, “Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes,” Appl. Opt. 46(16), 3304–3310 (2007).
    [Crossref] [PubMed]
  12. A. Ito, Y. Kozawa, and S. Sato, “Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing,” J. Opt. Soc. Am. B 26(4), 708–712 (2009).
    [Crossref]
  13. M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19(3), 1905–1914 (2011).
    [Crossref] [PubMed]
  14. S. Vyas, Y. Kozawa, and S. Sato, “Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO4 laser,” Opt. Lett. 39(4), 1101–1104 (2014).
    [Crossref] [PubMed]
  15. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
    [Crossref] [PubMed]
  16. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
    [Crossref] [PubMed]
  17. T. Kämpfe, S. Tonchev, A. V. Tishchenko, D. Gergov, and O. Parriaux, “Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband,” Opt. Express 20(5), 5392–5401 (2012).
    [Crossref] [PubMed]
  18. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [Crossref] [PubMed]
  19. D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
    [Crossref] [PubMed]
  20. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
    [Crossref] [PubMed]
  21. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
    [Crossref] [PubMed]
  22. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
    [Crossref] [PubMed]
  23. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [Crossref] [PubMed]
  24. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
    [Crossref] [PubMed]
  25. A. Loescher, J.-P. Negel, T. Graf, and M. Abdou Ahmed, “Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Opt. Lett. 40(24), 5758–5761 (2015).
    [Crossref] [PubMed]
  26. A. Loescher, J.-P. Negel, T. Graf, W. Pallmann, B. Resan, I. Martial, J. Didierjean, F. Lesparre, J.-T. Gomes, X. Delen, F. P. Druon, F. Balembois, P. Georges, and M. Abdou Ahmed, “A 265W and 782 fs amplified radially polarized beam emitted by a thin-disk multipass amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh3A.3.
  27. M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
    [Crossref] [PubMed]
  28. J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  29. F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
    [Crossref] [PubMed]
  30. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref] [PubMed]
  31. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [Crossref] [PubMed]
  32. B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
    [Crossref] [PubMed]
  33. C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Sudmeyer, and U. Keller, “Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
    [Crossref]
  34. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42(17), 3263–3266 (2017).
    [Crossref] [PubMed]
  35. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
    [Crossref]
  36. T. Liebig, M. Abdou Ahmed, A. Voss, and T. Graf, “Novel multi-sensor polarimeter for the characterization of inhomogenously polarized laser beams,” in SPIE LASE Photonics West (2010).

2017 (2)

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
[Crossref] [PubMed]

T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42(17), 3263–3266 (2017).
[Crossref] [PubMed]

2016 (2)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (4)

2013 (2)

2012 (4)

2011 (2)

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19(3), 1905–1914 (2011).
[Crossref] [PubMed]

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (2)

2007 (4)

2005 (2)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

2004 (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

2003 (1)

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Abdou Ahmed, M.

Ahmed, M. A.

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Ancona, A.

Apolonskiy, A.

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Baer, C. R. E.

Balembois, F.

Bauer, D.

Beresna, M.

Brons, J.

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Clarkson, W. A.

Daniel, J. M. O.

Davidson, N.

Dekorsy, T.

Délen, X.

Didierjean, J.

Diebold, A.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Sudmeyer, and U. Keller, “Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Dietrich, T.

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Druon, F.

Eckerle, M.

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Emaury, F.

Endo, M.

Fedulova, E.

Fotakis, C.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
[Crossref] [PubMed]

Gecevicius, M.

Georges, P.

Gergov, D.

Golling, M.

Gomes, J. T.

Graf, T.

T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42(17), 3263–3266 (2017).
[Crossref] [PubMed]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
[Crossref] [PubMed]

A. Loescher, J.-P. Negel, T. Graf, and M. Abdou Ahmed, “Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Opt. Lett. 40(24), 5758–5761 (2015).
[Crossref] [PubMed]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
[Crossref] [PubMed]

J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[Crossref] [PubMed]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[Crossref] [PubMed]

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Häcker, T.

T. Häcker, “Adapted polarization for sheet metal cutting,” in AKL International Laser Technology Congress (2016).

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Heckl, O. H.

Hnatovsky, C.

Hoffmann, M.

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Ilday, F. O.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Ito, A.

Jackel, S.

Kalashnikov, V.

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kämpfe, T.

Kazansky, P. G.

Keller, U.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Sudmeyer, and U. Keller, “Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Killi, A.

Kozawa, Y.

Kraus, M.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

Krausz, F.

Krolikowski, W.

Lesparre, F.

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Limpert, J.

Lin, D.

Loescher, A.

Lumer, Y.

Machavariani, G.

Manousaki, A.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
[Crossref] [PubMed]

Martial, I.

Meir, A.

Michalowski, A.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

Moshe, I.

Negel, J.-P.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Nolte, S.

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Onuseit, V.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

Osten, W.

Pallmann, W.

Parriaux, O.

Pervak, V.

Piehler, S.

Pommier, J.-C.

Pronin, O.

Pruss, C.

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Rademaker, K.

Resan, B.

Röcker, C.

Rominger, V.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

Röser, F.

Rumpel, M.

Saraceno, C. J.

Sato, S.

Schaal, F.

Schriber, C.

Schulz, J.

Senatsky, Y.

Shvedov, V. G.

Skoulas, E.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
[Crossref] [PubMed]

Stratakis, E.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
[Crossref] [PubMed]

Sudmeyer, T.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Sudmeyer, and U. Keller, “Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Südmeyer, T.

Sutter, D.

Sutter, D. H.

Thirugnanasambandam, M. P.

Tishchenko, A. V.

Tonchev, S.

Tünnermann, A.

Ueda, K.

Vogel, M. M.

Voss, A.

Vyas, S.

Weber, R.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

Weichelt, B.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Zawischa, I.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: From mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: From mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Sudmeyer, and U. Keller, “Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[Crossref]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Opt. Express (7)

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[Crossref] [PubMed]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19(3), 1905–1914 (2011).
[Crossref] [PubMed]

T. Kämpfe, S. Tonchev, A. V. Tishchenko, D. Gergov, and O. Parriaux, “Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband,” Opt. Express 20(5), 5392–5401 (2012).
[Crossref] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[Crossref] [PubMed]

C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21(10), 12651–12656 (2013).
[Crossref] [PubMed]

Opt. Lett. (16)

J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
[Crossref] [PubMed]

S. Vyas, Y. Kozawa, and S. Sato, “Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO4 laser,” Opt. Lett. 39(4), 1101–1104 (2014).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
[Crossref] [PubMed]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
[Crossref] [PubMed]

A. Loescher, J.-P. Negel, T. Graf, and M. Abdou Ahmed, “Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Opt. Lett. 40(24), 5758–5761 (2015).
[Crossref] [PubMed]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
[Crossref] [PubMed]

T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M. Abdou Ahmed, and T. Graf, “Passive compensation of the misalignment instability caused by air convection in thin-disk lasers,” Opt. Lett. 42(17), 3263–3266 (2017).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
[Crossref] [PubMed]

M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
[Crossref] [PubMed]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007).
[Crossref] [PubMed]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
[Crossref] [PubMed]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Phys. Procedia (1)

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Phys. Procedia 12, 21–30 (2011).
[Crossref]

Sci. Rep. (1)

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7(45114), 45114 (2017).
[Crossref] [PubMed]

Other (3)

A. Loescher, J.-P. Negel, T. Graf, W. Pallmann, B. Resan, I. Martial, J. Didierjean, F. Lesparre, J.-T. Gomes, X. Delen, F. P. Druon, F. Balembois, P. Georges, and M. Abdou Ahmed, “A 265W and 782 fs amplified radially polarized beam emitted by a thin-disk multipass amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh3A.3.

T. Häcker, “Adapted polarization for sheet metal cutting,” in AKL International Laser Technology Congress (2016).

T. Liebig, M. Abdou Ahmed, A. Voss, and T. Graf, “Novel multi-sensor polarimeter for the characterization of inhomogenously polarized laser beams,” in SPIE LASE Photonics West (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Sketch of the cavity consisting of the thin-disk laser crystal, the SESAM, curved mirrors with the radius of curvature (RoC, positive values correspond to concave curvatures and negative values to convex curvatures) as specified in the sketch, plane dispersive mirrors, and the GWOC (Inset: Photo of the GWOC). The distances between the cavity elements are given in mm. (b) Mode size in the cavity with position of key elements indicated by the arrows.
Fig. 2
Fig. 2 (a) Spectral reflectivity of the GWOC measured with a radially and azimuthally polarized probe beam. (b) Sketch of the possible channels (reflection, transmission and diffraction) for a radially polarized beam incident on the GWOC. The out-coupled radiation is separated into the useful beam and a residual diffraction into the ± 1st diffraction order.
Fig. 3
Fig. 3 Measured average output power and optical efficiency as a function of the pumping power.
Fig. 4
Fig. 4 Measured pulse duration over output power.
Fig. 5
Fig. 5 (a) Second harmonic intensity autocorrelation trace and sech2 fit of the pulses at maximum output power of 125 W. (b) Corresponding spectral intensity at maximum output power.
Fig. 6
Fig. 6 Pulse train measured with a fast photodiode on an oscilloscope.
Fig. 7
Fig. 7 (a) Radio frequency signal measured with a span of 45 kHz and a Resolution Bandwidth (RBW) of 30 Hz. (b) Radio frequency signal measured with a span of 1 MHz and a RBW of 1 kHz.
Fig. 8
Fig. 8 Far-field intensity distribution and intensity distribution transmitted through a rotatable polarization analyzer. The white arrows indicate the direction of the polarization.

Metrics