Abstract

A swept source with both high repetition-rate and broad bandwidth is indispensable to enable optical coherence tomography (OCT) with high imaging rate and high axial resolution. However, available swept sources are commonly either limited in speed (sub-MHz) by inertial or kinetic component, or limited in bandwidth (<100 nm) by the gain medium. Here we report an ultrafast broadband (over 100 nm centered at 1.55-µm) all-fiber inertial-free swept source built upon a high-power dispersion-managed fiber laser in conjunction with an optical time-stretch module which bypasses complex optical amplification scheme, which result in a portable and compact implementation of time-stretch OCT (TS-OCT) at A-scan rate of 44.5-MHz, axial resolution of 14 µm in air (or 10 µm in tissue), and flat sensitivity roll-off within 4.3 mm imaging range. Together with the demonstration of two- and three-dimensional OCT imaging of a mud-fish eye anterior segment, we also perform comprehensive studies on the imaging depth, receiver bandwidth, and group velocity dispersion condition. This all-fiber inertia-free swept source could provide a promising source solution for SS-OCT system to realize high-performance volumetric OCT imaging in real time.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch

Jingjiang Xu, Xiaoming Wei, Luoqin Yu, Chi Zhang, Jianbing Xu, K. K. Y. Wong, and Kevin K. Tsia
Biomed. Opt. Express 6(4) 1340-1350 (2015)

Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT)

Jingjiang Xu, Xiaoming Wei, Luoqin Yu, Chi Zhang, Jianbing Xu, K. K. Y. Wong, and Kevin K. Tsia
Opt. Express 22(19) 22498-22512 (2014)

Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch

Jingjiang Xu, Chi Zhang, Jianbing Xu, K. K. Y. Wong, and K. K. Tsia
Opt. Lett. 39(3) 622-625 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Application, 2nd ed. (Springer, 2008).
  3. J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, eds., Optical Coherence Tomography of Ocular Diseases, 3rd ed. (Slack Inc., 2004).
  4. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
    [Crossref] [PubMed]
  5. Y. Yoon, W. H. Jang, P. Xiao, B. Kim, T. Wang, Q. Li, J. Y. Lee, E. Chung, and K. H. Kim, “In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe,” Biomed. Opt. Express 6(2), 524–535 (2015).
    [Crossref] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  7. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  8. Y. Watanabe, F. Sajima, T. Itagaki, K. Watanabe, and Y. Shuto, “High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay,” Appl. Opt. 48(18), 3401–3406 (2009).
    [Crossref] [PubMed]
  9. R. I. Macdonald, “Frequency domain optical reflectometer,” Appl. Opt. 20(10), 1840–1844 (1981).
    [Crossref] [PubMed]
  10. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref] [PubMed]
  11. T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
    [Crossref] [PubMed]
  12. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  13. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  14. B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express 17(5), 3619–3629 (2009).
    [Crossref] [PubMed]
  15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  16. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
    [Crossref]
  17. E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
    [Crossref]
  18. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref] [PubMed]
  19. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  20. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859 (2017).
    [Crossref] [PubMed]
  21. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [Crossref] [PubMed]
  22. C. Jun, M. Villiger, W. Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
    [Crossref] [PubMed]
  23. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  24. J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9(1), 120–130 (2017).
    [Crossref] [PubMed]
  25. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
    [Crossref] [PubMed]
  26. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” In Asia Communications and Photonics (SPIE-OSA-IEEE, 2011), 8311, 831116.
  27. J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8(1), 420–435 (2016).
    [Crossref] [PubMed]
  28. S. Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express 7(11), 4734–4748 (2016).
    [Crossref] [PubMed]
  29. J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [Crossref] [PubMed]
  30. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22(19), 22498–22512 (2014).
    [Crossref] [PubMed]
  31. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
    [Crossref] [PubMed]
  32. K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
    [Crossref]
  33. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  34. Y. Zhou, K. K. H. Chan, T. Lai, and S. Tang, “Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography,” Biomed. Opt. Express 4(1), 38–50 (2013).
    [Crossref] [PubMed]
  35. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  36. P. Grelu and N. Akhmediev, “Dissipative soliton for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  37. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  38. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
    [Crossref] [PubMed]
  39. X. Wei, J. Xu, Y. Xu, L. Yu, J. Xu, B. Li, A. K. S. Lau, X. Wang, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging,” Opt. Lett. 39(23), 6593–6596 (2014).
    [Crossref] [PubMed]
  40. R. Steiner, “Laser-Tissue Interactions,” in Laser and IPL Technology in Dermatology and Aesthetic Medicine, C. Raulin and S. Karsai, eds. (Springer, 2011), pp. 23–36.
  41. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
    [Crossref] [PubMed]
  42. X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
    [Crossref] [PubMed]
  43. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2013).
    [Crossref] [PubMed]
  44. X. Yu, X. Liu, S. Chen, Y. Luo, X. Wang, and L. Liu, “High-resolution extended source optical coherence tomography,” Opt. Express 23(20), 26399–26413 (2015).
    [Crossref] [PubMed]
  45. J. Ke and E. Y. Lam, “Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography,” Biomed. Opt. Express 3(4), 741–752 (2012).
    [Crossref] [PubMed]
  46. J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006).
    [Crossref] [PubMed]
  47. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  48. J. Kang, X. Wei, B. Li, X. Wang, L. Yu, S. Tan, C. Jinata, and K. K. Y. Wong, “Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier,” Biomed. Opt. Express 7(4), 1294–1304 (2016).
    [Crossref] [PubMed]
  49. A. N. S. Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (2000).
  50. J. Image, https://imagej.nih.gov/ij/ .
  51. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  52. A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
    [Crossref] [PubMed]

2017 (2)

2016 (4)

2015 (3)

2014 (6)

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22(19), 22498–22512 (2014).
[Crossref] [PubMed]

C. Jun, M. Villiger, W. Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref] [PubMed]

X. Wei, J. Xu, Y. Xu, L. Yu, J. Xu, B. Li, A. K. S. Lau, X. Wang, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging,” Opt. Lett. 39(23), 6593–6596 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

2010 (2)

2009 (5)

2008 (2)

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

2007 (2)

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

2006 (4)

2005 (1)

2003 (2)

2002 (1)

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

1998 (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1996 (1)

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1981 (1)

Adler, D. C.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative soliton for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Aretz, H. T.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Backman, V.

Bajraszewski, T.

Biedermann, B. R.

Bonesi, M.

Boschert, P.

Bouma, B. E.

C. Jun, M. Villiger, W. Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref] [PubMed]

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
[Crossref] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express 17(5), 3619–3629 (2009).
[Crossref] [PubMed]

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Brezinski, M. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Cable, A. E.

Chan, K. K. H.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
[Crossref]

Chen, L.

Chen, S.

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Cheng, T. H.

Choi, W.

Choma, M.

Chung, E.

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Crawford, M.

Desjardins, A. E.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

Doerr, C.

Draxinger, W.

Drexler, W.

Duker, J. S.

Eibl, M.

Eigenwillig, C. M.

Ensher, J.

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[Crossref] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Goda, K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

Goldberg, B. D.

Gong, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative soliton for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Grulkowski, I.

Hakert, H.

Halpern, E. F.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C.

Hoover, E.

Hornegger, J.

Houser, S. L.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, H.

Huber, R.

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859 (2017).
[Crossref] [PubMed]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9(1), 120–130 (2017).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Itagaki, T.

Izatt, J.

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

Jang, I. K.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Jang, W. H.

Jayaraman, V.

Jiang, J.

Jillella, P.

Jinata, C.

Jones, D. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Jun, C.

Kampik, A.

Kang, D. H.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Kang, J.

Karpf, S.

Kauffman, C. R.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Ke, J.

Kim, B.

Kim, K. H.

Kim, Y. L.

Klein, T.

Kolb, J. P.

Kowalczyk, A.

Kraus, M. F.

Lai, T.

Lam, E. Y.

Lau, A. K. S.

Lee, H.-C.

Lee, J. Y.

Leitgeb, R.

Leitgeb, R. A.

Li, B.

Li, G. S.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
[Crossref]

Li, Q.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, B.

Liu, J. J.

Liu, L.

Liu, X.

Liu, Y.

Lu, C.

Lu, C. D.

Luo, Y.

Macdonald, R. I.

Minneman, M. P.

Motaghian Nezam, S. M.

Nelson, L. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Neubauer, A.

Nielson, T.

Oh, W. Y.

Peng, M.

Pfeiffer, T.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Reznicek, L.

Sajima, F.

Sarunic, M.

Sattmann, H.

Schlendorf, K. H.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shishkov, M.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
[Crossref] [PubMed]

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Shuto, Y.

Solli, D. R.

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

Song, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suter, M. J.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

Swanson, E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Taira, K.

Tam, H. Y.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Tan, S.

Tang, D. Y.

Tang, S.

Tearney, G. J.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
[Crossref] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express 17(5), 3619–3629 (2009).
[Crossref] [PubMed]

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Tsai, T. H.

Tsia, K. K.

Vail, E. C.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
[Crossref]

Vakoc, B. J.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
[Crossref] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

Villiger, M.

Wang, R. K.

Wang, T.

Wang, X.

Wang, Z.

Watanabe, K.

Watanabe, Y.

Wei, W.

Wei, X.

Wieser, W.

Wojtkowski, M.

Wong, K. K. Y.

Wu, J.

Xiao, P.

Xu, J.

S. Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express 7(11), 4734–4748 (2016).
[Crossref] [PubMed]

J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8(1), 420–435 (2016).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
[Crossref] [PubMed]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

X. Wei, J. Xu, Y. Xu, L. Yu, J. Xu, B. Li, A. K. S. Lau, X. Wang, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging,” Opt. Lett. 39(23), 6593–6596 (2014).
[Crossref] [PubMed]

X. Wei, J. Xu, Y. Xu, L. Yu, J. Xu, B. Li, A. K. S. Lau, X. Wang, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging,” Opt. Lett. 39(23), 6593–6596 (2014).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22(19), 22498–22512 (2014).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22(19), 22498–22512 (2014).
[Crossref] [PubMed]

Xu, S.

Xu, Y.

Yabushita, H.

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Yang, C.

Yang, Z.

Yoon, Y.

Yu, L.

Yu, X.

Yuen, W.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
[Crossref]

Yun, S. H.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

Zabihian, B.

Zhang, C.

Zhang, H.

Zhao, L. M.

Zhou, C.

Zhou, Y.

Appl. Opt. (2)

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Appl. Phys. Lett. (1)

K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 031106 (2008).
[Crossref]

Biomed. Opt. Express (13)

J. Ke and E. Y. Lam, “Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography,” Biomed. Opt. Express 3(4), 741–752 (2012).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Y. Zhou, K. K. H. Chan, T. Lai, and S. Tang, “Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography,” Biomed. Opt. Express 4(1), 38–50 (2013).
[Crossref] [PubMed]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2013).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

Y. Yoon, W. H. Jang, P. Xiao, B. Kim, T. Wang, Q. Li, J. Y. Lee, E. Chung, and K. H. Kim, “In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe,” Biomed. Opt. Express 6(2), 524–535 (2015).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
[Crossref] [PubMed]

J. Kang, X. Wei, B. Li, X. Wang, L. Yu, S. Tan, C. Jinata, and K. K. Y. Wong, “Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier,” Biomed. Opt. Express 7(4), 1294–1304 (2016).
[Crossref] [PubMed]

S. Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express 7(11), 4734–4748 (2016).
[Crossref] [PubMed]

J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8(1), 420–435 (2016).
[Crossref] [PubMed]

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859 (2017).
[Crossref] [PubMed]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9(1), 120–130 (2017).
[Crossref] [PubMed]

Circulation (1)

H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of Human Atherosclerosis by Optical Coherence Tomography,” Circulation 106(13), 1640–1645 (2002).
[Crossref] [PubMed]

Electron. Lett. (1)

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance micromechanical tunable vertical cavity surface emitting lasers,” Electron. Lett. 32(20), 1888–1889 (1996).
[Crossref]

IEEE Trans. Med. Imaging (1)

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging,” IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Grelu and N. Akhmediev, “Dissipative soliton for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Opt. Express (14)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14(13), 5909–5915 (2006).
[Crossref] [PubMed]

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express 17(5), 3619–3629 (2009).
[Crossref] [PubMed]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

X. Yu, X. Liu, S. Chen, Y. Luo, X. Wang, and L. Liu, “High-resolution extended source optical coherence tomography,” Opt. Express 23(20), 26399–26413 (2015).
[Crossref] [PubMed]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22(19), 22498–22512 (2014).
[Crossref] [PubMed]

C. Jun, M. Villiger, W. Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (6)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Application, 2nd ed. (Springer, 2008).

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, eds., Optical Coherence Tomography of Ocular Diseases, 3rd ed. (Slack Inc., 2004).

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” In Asia Communications and Photonics (SPIE-OSA-IEEE, 2011), 8311, 831116.

R. Steiner, “Laser-Tissue Interactions,” in Laser and IPL Technology in Dermatology and Aesthetic Medicine, C. Raulin and S. Karsai, eds. (Springer, 2011), pp. 23–36.

A. N. S. Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (2000).

J. Image, https://imagej.nih.gov/ij/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed TS-OCT system. OIM: optical integrated module; EDF: erbium-doped fiber; PC, polarization controller; SMF: standard single-mode fiber; SOA: amplified spontaneous emission; PD: photodetector; BD: balanced detector; DAC: digital-to-analog converter.
Fig. 2
Fig. 2 Performance of the broadband mode-locked fiber laser. (a): Direct output optical spectrum; (b): Time-domain pulse train; (c): RF spectrum with 140 MHz span, and inset is 3GHz; (d): Autocorrelation trace of the mode-locked pulse.
Fig. 3
Fig. 3 (a): Optical spectrum before and after SOA, respectively; (b): Time domain waveform after SOA. (c): The real-time single-shot interferograms generated by the TS-OCT system at a repetition rate of 44.5 MHz.
Fig. 4
Fig. 4 (a) Interference fringe in one period with a mirror as the sample; (b) Unwrapped phase curve for sweep-by-sweep resampling.
Fig. 5
Fig. 5 (a) Sensitivity roll-off as a function of imaging depth; (b) 14 µm axial resolution in air.
Fig. 6
Fig. 6 (a) Cross-sectional images (2D) of an anterior segment of a mud-fish eye at center area. (b)-(d) 3D images are shown from top view, side view, and bottom view.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I AC cos( 2kΔz )= I AC cos( 4π f o Δz/c ),
Δ f o = c 2Δz .
Δt= xc f o 2 Δ f o .
f e = 1 Δt = f o 2 xcΔ f o .

Metrics