Abstract

Easy-to-fabricate, high-temperature, thermally-stable radiators are critical elements for developing efficient and sustainable thermophotovoltaic energy conversion devices. In this frame, a trilayer-on-substrate structure is selected. It is composed of a refractory metal -molybdenum - constituting the substrate and an intermediate thin film sandwiched between two hafnia transparent layers. An in-depth analysis shows that two spectrally distinct interference regimes take place in the hafnia layer-molybdenum thin film substructure, and that backward and forward thermally-emitted waves by the thin film are selected in two distinct interferential resonating cavities. The interference regimes within and between these cavities are key to the spectral shaping of thermal emission. The radiative performances of the structures are evaluated by introducing a figure of merit. Using the example of a GaSb cell, it is shown that the structure can be optimized for providing the broadband large emission with a steep cutoff required for mitigating photoconversion losses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of W/HfO2 grating selective thermal emitters for thermophotovoltaic applications

Gerardo Silva-Oelker, Carlos Jerez-Hanckes, and Patrick Fay
Opt. Express 26(22) A929-A936 (2018)

Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate

Etienne Blandre, Pierre-Olivier Chapuis, and Rodolphe Vaillon
Opt. Express 24(2) A374-A387 (2016)

Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter

Jinlin Song, Mengting Si, Qiang Cheng, and Zixue Luo
Appl. Opt. 55(6) 1284-1290 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. P. Harder and P. Würfel, “Theoretical Limits of Thermophotovoltaic Solar Energy Conversion,” Semicond. Sci. Technol.  18(5), S151 (2003).
    [Crossref]
  2. A. Datas and A. Martí, “Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Sol. Energ. Mat. Sol. C.  161, 285 – 296 (2017).
    [Crossref]
  3. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).
  4. M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency Solar-thermophotovoltaic System Equipped With a Monolithic Planar Selective Absorber/Emitter,” J. Photonics Energy 5(1), 053099 (2015).
    [Crossref]
  5. C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar Thermophotovoltaic System Using Nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
    [Crossref] [PubMed]
  6. J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
    [Crossref]
  7. O. Dupré, R. Vaillon, and M. A. Green, Thermal Behaviour of Photovoltaic Devices. Physics and Engineering(Springer, 2017).
    [Crossref]
  8. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal Emission and Design in 2d-periodic Metallic Photonic Crystal Slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [Crossref] [PubMed]
  9. J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
    [Crossref] [PubMed]
  10. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
    [Crossref] [PubMed]
  11. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature Stability and Selective Thermal Emission of Polycrystalline Tantalum Photonic Crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref] [PubMed]
  12. C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
    [Crossref]
  13. A. Narayanaswamy and G. Chen, “Thermal Emission Control With One-dimensional Metallodielectric Photonic Crystals,” Phys. Rev. B 70, 125101 (2004).
    [Crossref]
  14. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity Enhanced Thermal Emission,” Phys. Rev. B 72, 075127 (2005).
    [Crossref]
  15. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of Wide-angle Solar-selective Absorbers using Aperiodic Metal-dielectric Stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref]
  16. E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective Emitters Design and Optimization for Thermophotovoltaic Applications,” J. Appl. Phys. 111(8), 084316 (2012).
    [Crossref]
  17. E. Blandre, P. O. Chapuis, and R. Vaillon, “Spectral and Total Temperature-dependent Emissivities of Few-layer Structures on a Metallic Substrate,” Opt. Express 24(2), A374–A387 (2016).
    [Crossref] [PubMed]
  18. B. J. Lee and Z. M. Zhang, “Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
    [Crossref]
  19. L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
    [Crossref]
  20. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Pérot Cavity Resonator,” J. Heat Transfer 134, 072701 (2012).
    [Crossref]
  21. G. E. Guazzoni, “High-temperature Spectral Emittance of Oxides of Erbium, Samarium, Neodymium and Ytterbium,” Appl. Spectrosc. 26(1), 60–65 (1972).
    [Crossref]
  22. D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
    [Crossref]
  23. B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
    [Crossref]
  24. N. A. Pfiester and T. E. Vandervelde, “Selective Emitters for Thermophotovoltaic Applications,” Phys. Status Solidi (a) 214(1), 1600410 (2017).
    [Crossref]
  25. D. Chester, P. Bermel, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and Global Optimization of High-efficiency Solar Thermal Systems With Tungsten Cermets,” Opt. Express 19(S3), A245–A257 (2011).
    [Crossref] [PubMed]
  26. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten Band Edge Absorber/Emitter Based on a Monolayer of Ceramic Microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
    [Crossref] [PubMed]
  27. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).
  28. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer Tungsten-alumina-based Broadband Light Absorbers for High-temperature Applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
    [Crossref]
  29. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar Thermophotovoltaics: Reshaping the Solar Spectrum”, Nanophotonics 5(1), 11 (2016).
    [Crossref]
  30. J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature Degradation of One-dimensional Metallodielectric (W/SiO2) Photonic Crystal as Selective Thermal Emitter for Thermophotovoltaic System”, Opt. Mater. 72, 45 – 51 (2017).
    [Crossref]
  31. A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-efficiency Solar Thermophotovoltaic Systems,” Appl. Phys. Exp. 9(11), 112302 (2016).
    [Crossref]
  32. S. M. Rytov, I. U. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer-Verlag, 1989).
  33. D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).
  34. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of Near-field Thermal Radiation in One-dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002 – 2018 (2009).
    [Crossref]
  35. E. Palik, Handbook of Optical Constants of Solids, 1rst edition (Academic University, 1987)
  36. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  37. M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
    [Crossref]
  38. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption in Ultrathin Films and its Application to Plasmon-based Two-dimensional Photovoltaics,” Nano Lett.  10, 3135 – 3141 (2010).
    [Crossref] [PubMed]
  39. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral Tuning of Near-field Radiative Heat Flux Between Two Thin Silicon Carbide Films,” J. Phys. D: Appl. Phys 43(7), 075501 (2010).
    [Crossref]
  40. A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15 nm : Applicability of Bloch-Grüneisen Theorem,” Phys. Rev. B 74(3), 035426 (2006).
    [Crossref]
  41. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,” IEEE Trans. Ener. Conv. 26(2), 686–698 (2011).
    [Crossref]
  42. M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
    [Crossref] [PubMed]
  43. J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of Thermal Emission Spectra Maximizing Thermopho-tovoltaic Performance Using a Genetic Algorithm,” Energ. Convers. Manage.  108, 429 – 438 (2016).
    [Crossref]

2017 (3)

A. Datas and A. Martí, “Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Sol. Energ. Mat. Sol. C.  161, 285 – 296 (2017).
[Crossref]

N. A. Pfiester and T. E. Vandervelde, “Selective Emitters for Thermophotovoltaic Applications,” Phys. Status Solidi (a) 214(1), 1600410 (2017).
[Crossref]

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature Degradation of One-dimensional Metallodielectric (W/SiO2) Photonic Crystal as Selective Thermal Emitter for Thermophotovoltaic System”, Opt. Mater. 72, 45 – 51 (2017).
[Crossref]

2016 (7)

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-efficiency Solar Thermophotovoltaic Systems,” Appl. Phys. Exp. 9(11), 112302 (2016).
[Crossref]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer Tungsten-alumina-based Broadband Light Absorbers for High-temperature Applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar Thermophotovoltaics: Reshaping the Solar Spectrum”, Nanophotonics 5(1), 11 (2016).
[Crossref]

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

E. Blandre, P. O. Chapuis, and R. Vaillon, “Spectral and Total Temperature-dependent Emissivities of Few-layer Structures on a Metallic Substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref] [PubMed]

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of Thermal Emission Spectra Maximizing Thermopho-tovoltaic Performance Using a Genetic Algorithm,” Energ. Convers. Manage.  108, 429 – 438 (2016).
[Crossref]

2015 (4)

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency Solar-thermophotovoltaic System Equipped With a Monolithic Planar Selective Absorber/Emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar Thermophotovoltaic System Using Nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten Band Edge Absorber/Emitter Based on a Monolayer of Ceramic Microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

2014 (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

2013 (1)

2012 (5)

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective Emitters Design and Optimization for Thermophotovoltaic Applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Pérot Cavity Resonator,” J. Heat Transfer 134, 072701 (2012).
[Crossref]

2011 (2)

D. Chester, P. Bermel, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and Global Optimization of High-efficiency Solar Thermal Systems With Tungsten Cermets,” Opt. Express 19(S3), A245–A257 (2011).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,” IEEE Trans. Ener. Conv. 26(2), 686–698 (2011).
[Crossref]

2010 (2)

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption in Ultrathin Films and its Application to Plasmon-based Two-dimensional Photovoltaics,” Nano Lett.  10, 3135 – 3141 (2010).
[Crossref] [PubMed]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral Tuning of Near-field Radiative Heat Flux Between Two Thin Silicon Carbide Films,” J. Phys. D: Appl. Phys 43(7), 075501 (2010).
[Crossref]

2009 (3)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of Near-field Thermal Radiation in One-dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002 – 2018 (2009).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
[Crossref]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of Wide-angle Solar-selective Absorbers using Aperiodic Metal-dielectric Stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref]

2008 (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

2006 (3)

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal Emission and Design in 2d-periodic Metallic Photonic Crystal Slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref] [PubMed]

B. J. Lee and Z. M. Zhang, “Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15 nm : Applicability of Bloch-Grüneisen Theorem,” Phys. Rev. B 74(3), 035426 (2006).
[Crossref]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity Enhanced Thermal Emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

2004 (1)

A. Narayanaswamy and G. Chen, “Thermal Emission Control With One-dimensional Metallodielectric Photonic Crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

2003 (1)

N. P. Harder and P. Würfel, “Theoretical Limits of Thermophotovoltaic Solar Energy Conversion,” Semicond. Sci. Technol.  18(5), S151 (2003).
[Crossref]

2002 (2)

J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

1999 (1)

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
[Crossref]

1972 (1)

1971 (1)

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).

Agrawal, M.

Apell, S. P.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption in Ultrathin Films and its Application to Plasmon-based Two-dimensional Photovoltaics,” Nano Lett.  10, 3135 – 3141 (2010).
[Crossref] [PubMed]

Arnold, C.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Bardou, N.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Basu, S.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Pérot Cavity Resonator,” J. Heat Transfer 134, 072701 (2012).
[Crossref]

Bermel, P.

Bernardi, M. P.

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of Thermal Emission Spectra Maximizing Thermopho-tovoltaic Performance Using a Genetic Algorithm,” Energ. Convers. Manage.  108, 429 – 438 (2016).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Bhatia, B.

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

Bid, A.

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15 nm : Applicability of Bloch-Grüneisen Theorem,” Phys. Rev. B 74(3), 035426 (2006).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

Bierman, J. M.

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

Bitnar, B.

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

Blanchard, R.

M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Blandre, E.

E. Blandre, P. O. Chapuis, and R. Vaillon, “Spectral and Total Temperature-dependent Emissivities of Few-layer Structures on a Metallic Substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Bora, A.

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15 nm : Applicability of Bloch-Grüneisen Theorem,” Phys. Rev. B 74(3), 035426 (2006).
[Crossref]

Bozhevolnyi, S. I.

Capasso, F.

M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Celanovic, I.

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature Stability and Selective Thermal Emission of Polycrystalline Tantalum Photonic Crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

D. Chester, P. Bermel, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and Global Optimization of High-efficiency Solar Thermal Systems With Tungsten Cermets,” Opt. Express 19(S3), A245–A257 (2011).
[Crossref] [PubMed]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity Enhanced Thermal Emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Chan, D. L. C.

Chan, W. R.

Chapuis, P. O.

E. Blandre, P. O. Chapuis, and R. Vaillon, “Spectral and Total Temperature-dependent Emissivities of Few-layer Structures on a Metallic Substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Chen, G.

A. Narayanaswamy and G. Chen, “Thermal Emission Control With One-dimensional Metallodielectric Photonic Crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

Chester, D.

Chirumamilla, M.

Chubb, D. L.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
[Crossref]

Collin, S.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Datas, A.

A. Datas and A. Martí, “Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Sol. Energ. Mat. Sol. C.  161, 285 – 296 (2017).
[Crossref]

DeSutter, J.

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of Thermal Emission Spectra Maximizing Thermopho-tovoltaic Performance Using a Genetic Algorithm,” Energ. Convers. Manage.  108, 429 – 438 (2016).
[Crossref]

Ding, F.

do Rosário, J. J.

Drevillon, J.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective Emitters Design and Optimization for Thermophotovoltaic Applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

Dupré, O.

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

O. Dupré, R. Vaillon, and M. A. Green, Thermal Behaviour of Photovoltaic Devices. Physics and Engineering(Springer, 2017).
[Crossref]

Durisch, W.

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten Band Edge Absorber/Emitter Based on a Monolayer of Ceramic Microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten Band Edge Absorber/Emitter Based on a Monolayer of Ceramic Microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Francoeur, M.

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of Thermal Emission Spectra Maximizing Thermopho-tovoltaic Performance Using a Genetic Algorithm,” Energ. Convers. Manage.  108, 429 – 438 (2016).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,” IEEE Trans. Ener. Conv. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral Tuning of Near-field Radiative Heat Flux Between Two Thin Silicon Carbide Films,” J. Phys. D: Appl. Phys 43(7), 075501 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of Near-field Thermal Radiation in One-dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002 – 2018 (2009).
[Crossref]

Garin, M.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
[Crossref]

Gray, S. K.

Green, M. A.

O. Dupré, R. Vaillon, and M. A. Green, Thermal Behaviour of Photovoltaic Devices. Physics and Engineering(Springer, 2017).
[Crossref]

Greffet, J. J.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Guazzoni, G. E.

Gupta, M. C.

Hägglund, C.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption in Ultrathin Films and its Application to Plasmon-based Two-dimensional Photovoltaics,” Nano Lett.  10, 3135 – 3141 (2010).
[Crossref] [PubMed]

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Harder, N. P.

N. P. Harder and P. Würfel, “Theoretical Limits of Thermophotovoltaic Solar Energy Conversion,” Semicond. Sci. Technol.  18(5), S151 (2003).
[Crossref]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Jenkins, P. P.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
[Crossref]

Joannopoulos, J. D.

Joulain, K.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective Emitters Design and Optimization for Thermophotovoltaic Applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

Jung, S. M.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature Degradation of One-dimensional Metallodielectric (W/SiO2) Photonic Crystal as Selective Thermal Emitter for Thermophotovoltaic System”, Opt. Mater. 72, 45 – 51 (2017).
[Crossref]

Kady, I. El

J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Kasemo, B.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption in Ultrathin Films and its Application to Plasmon-based Two-dimensional Photovoltaics,” Nano Lett.  10, 3135 – 3141 (2010).
[Crossref] [PubMed]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity Enhanced Thermal Emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
[Crossref]

Kim, J. H.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature Degradation of One-dimensional Metallodielectric (W/SiO2) Photonic Crystal as Selective Thermal Emitter for Thermophotovoltaic System”, Opt. Mater. 72, 45 – 51 (2017).
[Crossref]

Kohiyama, A.

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-efficiency Solar Thermophotovoltaic Systems,” Appl. Phys. Exp. 9(11), 112302 (2016).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency Solar-thermophotovoltaic System Equipped With a Monolithic Planar Selective Absorber/Emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

Kravtsov, I. U. A.

S. M. Rytov, I. U. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer-Verlag, 1989).

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Kristensen, P. K.

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Lee, B. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
[Crossref]

B. J. Lee and Z. M. Zhang, “Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

Leib, E. W.

Lenert, A.

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Marquier, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Martí, A.

A. Datas and A. Martí, “Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Sol. Energ. Mat. Sol. C.  161, 285 – 296 (2017).
[Crossref]

Mayor, J. C.

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

Mengüç, M. P.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,” IEEE Trans. Ener. Conv. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral Tuning of Near-field Radiative Heat Flux Between Two Thin Silicon Carbide Films,” J. Phys. D: Appl. Phys 43(7), 075501 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of Near-field Thermal Radiation in One-dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002 – 2018 (2009).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal Emission Control With One-dimensional Metallodielectric Photonic Crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

Nefzaoui, E.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective Emitters Design and Optimization for Thermophotovoltaic Applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Pal, A. T.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids, 1rst edition (Academic University, 1987)

Pardo, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Patton, M. O.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
[Crossref]

Pedersen, K.

Pelouard, J. L.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity Enhanced Thermal Emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Petrov, A. Yu.

Peumans, P.

Pfiester, N. A.

N. A. Pfiester and T. E. Vandervelde, “Selective Emitters for Thermophotovoltaic Applications,” Phys. Status Solidi (a) 214(1), 1600410 (2017).
[Crossref]

Pincon, O.

Polder, D.

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Raychaudhuri, A. K.

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15 nm : Applicability of Bloch-Grüneisen Theorem,” Phys. Rev. B 74(3), 035426 (2006).
[Crossref]

Rinnerbauer, V.

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Roberts, A. S.

Rytov, S. M.

S. M. Rytov, I. U. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer-Verlag, 1989).

Sakr, E.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar Thermophotovoltaics: Reshaping the Solar Spectrum”, Nanophotonics 5(1), 11 (2016).
[Crossref]

Schneider, G. A.

Senkevich, J. J.

Sergeant, N. P.

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shimizu, M.

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-efficiency Solar Thermophotovoltaic Systems,” Appl. Phys. Exp. 9(11), 112302 (2016).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency Solar-thermophotovoltaic System Equipped With a Monolithic Planar Selective Absorber/Emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

Shin, M. W.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature Degradation of One-dimensional Metallodielectric (W/SiO2) Photonic Crystal as Selective Thermal Emitter for Thermophotovoltaic System”, Opt. Mater. 72, 45 – 51 (2017).
[Crossref]

Sigg, H.

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

Soljacic, M.

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Stormer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Störmer, M.

Sun, Y.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar Thermophotovoltaics: Reshaping the Solar Spectrum”, Nanophotonics 5(1), 11 (2016).
[Crossref]

Tatarskii, V. I.

S. M. Rytov, I. U. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer-Verlag, 1989).

Tschudi, H. R.

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

Ungaro, C.

Vaillon, R.

E. Blandre, P. O. Chapuis, and R. Vaillon, “Spectral and Total Temperature-dependent Emissivities of Few-layer Structures on a Metallic Substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref] [PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,” IEEE Trans. Ener. Conv. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral Tuning of Near-field Radiative Heat Flux Between Two Thin Silicon Carbide Films,” J. Phys. D: Appl. Phys 43(7), 075501 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of Near-field Thermal Radiation in One-dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002 – 2018 (2009).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, Thermal Behaviour of Photovoltaic Devices. Physics and Engineering(Springer, 2017).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).

Vandervelde, T. E.

N. A. Pfiester and T. E. Vandervelde, “Selective Emitters for Thermophotovoltaic Applications,” Phys. Status Solidi (a) 214(1), 1600410 (2017).
[Crossref]

Vossmeyer, T.

Walker, R. C.

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

Wang, D.

Wang, E. N.

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

Wang, L. P.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Pérot Cavity Resonator,” J. Heat Transfer 134, 072701 (2012).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
[Crossref]

Wang, X. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
[Crossref]

Weller, H.

Würfel, P.

N. P. Harder and P. Würfel, “Theoretical Limits of Thermophotovoltaic Solar Energy Conversion,” Semicond. Sci. Technol.  18(5), S151 (2003).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yeng, Y. X.

Yugami, H.

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-efficiency Solar Thermophotovoltaic Systems,” Appl. Phys. Exp. 9(11), 112302 (2016).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency Solar-thermophotovoltaic System Equipped With a Monolithic Planar Selective Absorber/Emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

Zhang, Z. M.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Pérot Cavity Resonator,” J. Heat Transfer 134, 072701 (2012).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
[Crossref]

B. J. Lee and Z. M. Zhang, “Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

Zhou, Z.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar Thermophotovoltaics: Reshaping the Solar Spectrum”, Nanophotonics 5(1), 11 (2016).
[Crossref]

Appl. Phys. Exp. (1)

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-efficiency Solar Thermophotovoltaic Systems,” Appl. Phys. Exp. 9(11), 112302 (2016).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin Perfect Absorber Employing a Tunable Phase Change Material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Appl. Spectrosc. (1)

Energ. Convers. Manage (1)

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of Thermal Emission Spectra Maximizing Thermopho-tovoltaic Performance Using a Genetic Algorithm,” Energ. Convers. Manage.  108, 429 – 438 (2016).
[Crossref]

IEEE Trans. Ener. Conv. (1)

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal Impacts on the Performance of Nanoscale-gap Thermophotovoltaic Power Generators,” IEEE Trans. Ener. Conv. 26(2), 686–698 (2011).
[Crossref]

Int. J. Heat Mass Transfer (1)

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Pérot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024 – 3031 (2009).
[Crossref]

J. Appl. Phys. (2)

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective Emitters Design and Optimization for Thermophotovoltaic Applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

B. J. Lee and Z. M. Zhang, “Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

J. Eur. Ceram. Soc. (1)

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare Earth Doped High Temperature Ceramic Selective Emitters,” J. Eur. Ceram. Soc. 19(13–14), 2551 – 2562 (1999).
[Crossref]

J. Heat Transfer (1)

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct Measurement of Thermal Emission From a Fabry–Pérot Cavity Resonator,” J. Heat Transfer 134, 072701 (2012).
[Crossref]

J. Photonics Energy (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency Solar-thermophotovoltaic System Equipped With a Monolithic Planar Selective Absorber/Emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

J. Phys. D: Appl. Phys (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral Tuning of Near-field Radiative Heat Flux Between Two Thin Silicon Carbide Films,” J. Phys. D: Appl. Phys 43(7), 075501 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of Near-field Thermal Radiation in One-dimensional Layered Media Using Dyadic Green’s Functions and the Scattering Matrix Method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002 – 2018 (2009).
[Crossref]

Nano Lett (1)

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption in Ultrathin Films and its Application to Plasmon-based Two-dimensional Photovoltaics,” Nano Lett.  10, 3135 – 3141 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Nanophotonics (1)

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar Thermophotovoltaics: Reshaping the Solar Spectrum”, Nanophotonics 5(1), 11 (2016).
[Crossref]

Nat. Comm. (1)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling Thermal Emission With Refractory Epsilon-near-zero Metamaterials via Topological Transitions,” Nat. Comm. 11809 (2016).

Nat. Energ. (1)

J. M. Bierman, A. Lenert, R. C. Walker, B. Bhatia, I. Celanovic, M. Soljačić, and E. N. Wang, “Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping,” Nat. Energ. 1, 16068 (2016).
[Crossref]

Nature (1)

J. G. Fleming, S. Y. Lin, I. El Kady, and K. M. Ho, “All-metallic Three-dimensional Photonic Crystals With a Large Infrared Bandgap,” Nature 417, 52–55 (2002).
[Crossref] [PubMed]

Nature Mater. (1)

M. A. Kats, P. Genevet, R. Blanchard, and F. Capasso, “Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media,” Nature Mater. 12, 20–24 (2012).
[Crossref]

Nature Nanotech (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A Nanophotonic Solar Thermophotovoltaic Device,” Nature Nanotech.  1, 1 – 5 (2014).

Opt. Express (7)

D. Chester, P. Bermel, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and Global Optimization of High-efficiency Solar Thermal Systems With Tungsten Cermets,” Opt. Express 19(S3), A245–A257 (2011).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature Stability and Selective Thermal Emission of Polycrystalline Tantalum Photonic Crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten Band Edge Absorber/Emitter Based on a Monolayer of Ceramic Microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal Emission and Design in 2d-periodic Metallic Photonic Crystal Slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of Wide-angle Solar-selective Absorbers using Aperiodic Metal-dielectric Stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar Thermophotovoltaic System Using Nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
[Crossref] [PubMed]

E. Blandre, P. O. Chapuis, and R. Vaillon, “Spectral and Total Temperature-dependent Emissivities of Few-layer Structures on a Metallic Substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref] [PubMed]

Opt. Mater. (1)

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature Degradation of One-dimensional Metallodielectric (W/SiO2) Photonic Crystal as Selective Thermal Emitter for Thermophotovoltaic System”, Opt. Mater. 72, 45 – 51 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (5)

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).

A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ≥15 nm : Applicability of Bloch-Grüneisen Theorem,” Phys. Rev. B 74(3), 035426 (2006).
[Crossref]

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet,“Coherent Thermal Infrared Emission by Two-dimensional Silicon Carbide Gratings,” Phys. Rev. B 86, 035316 (2012).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal Emission Control With One-dimensional Metallodielectric Photonic Crystals,” Phys. Rev. B 70, 125101 (2004).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity Enhanced Thermal Emission,” Phys. Rev. B 72, 075127 (2005).
[Crossref]

Phys. Status Solidi (a) (1)

N. A. Pfiester and T. E. Vandervelde, “Selective Emitters for Thermophotovoltaic Applications,” Phys. Status Solidi (a) 214(1), 1600410 (2017).
[Crossref]

Sci. Rep. (1)

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-gap Thermophotovoltaic Power Generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol (1)

N. P. Harder and P. Würfel, “Theoretical Limits of Thermophotovoltaic Solar Energy Conversion,” Semicond. Sci. Technol.  18(5), S151 (2003).
[Crossref]

Sol. Energ. Mat. Sol. C (1)

A. Datas and A. Martí, “Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Sol. Energ. Mat. Sol. C.  161, 285 – 296 (2017).
[Crossref]

Sol. Energ. Mat. Sol. Cells (1)

B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, “Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications,” Sol. Energ. Mat. Sol. Cells 73(3), 221 – 234 (2002).
[Crossref]

Other (3)

O. Dupré, R. Vaillon, and M. A. Green, Thermal Behaviour of Photovoltaic Devices. Physics and Engineering(Springer, 2017).
[Crossref]

E. Palik, Handbook of Optical Constants of Solids, 1rst edition (Academic University, 1987)

S. M. Rytov, I. U. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Elements of Random Fields (Springer-Verlag, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Spectral values of the extinction coefficient of Mo (blue line) and spectral hemispherical emissivity of a Mo substrate (red line).
Fig. 2
Fig. 2 (a) Schematic of the few-layer structure under consideration. (b) Spectral hemispherical emissivity of the structure as a function of the thickness of the oxide layers, t1 being equal to t2.
Fig. 3
Fig. 3 Sum of partial reflectivities r1 + r2 + … + rl as a function of the number of secondary waves l for t1 = 100 nm. (a) λ = 0.3 μm, (b) λ = 10 μm. The inserts represent the sum of partial reflectivities in the complex plane.
Fig. 4
Fig. 4 Contribution of the Mo film to the spectral hemispherical emissivity of the structure considering t1 = t2. (a) considering only forward emitted waves. (b) considering only backward emitted waves. (c) incoherent addition the contribution of forward and backward emitted waves. (d) considering the coherence between every type of waves.
Fig. 5
Fig. 5 Spectral emissivity of the trilayer-on-substrate structure with normal incidence. The dashed and solid lines represent the constructive interference conditions at normal incidence of the two Fabry-Pérot resonators highlighted above.
Fig. 6
Fig. 6 (a) Figure of merit of the structure as a function of the thicknesses of the hafnium oxide layers t1 and t2. (b) Spectral hemispherical emissivity of the single Mo substrate (red line), of the optimized monolayer-on-substrate structure (blue line) and of the optimized trilayer on substrate structure (green line). The dashed curve corresponds to the optimization for λ < λg only. The dashed vertical line represents the wavelength corresponding to the bandgap of GaSb at 300 K.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r 0 = R 2 r l = T 2 × r 10 l × R 2 l 1 × T 2 × e 2 l i k z 2 t 1 , l = 1 , 2 , 3 , 4
R 2 = r 12 + r 23 e 2 i k z 2 d 1 + r 12 r 23 e 2 i k z 2 d ,
T 2 = t 12 + t 23 e i k z 2 d 1 + r 01 r 12 e 2 i k z 2 d .
t = ( m arg ( r 10 ) + arg ( R 2 ) 2 π ) λ 2 n cos φ
t = ( m arg ( R 2 ) + arg ( r 34 ) 2 π ) λ 2 n cos φ
ψ ( λ ) ) = { q λ b b ( T ) ( 1 ϵ λ ) for λ λ g q λ b b ( T ) ϵ λ for λ > λ g ,
F O M = 1 λ min λ max ψ ( λ ) d λ λ min λ max q λ b b ( T ) d λ .

Metrics