Abstract

The structures of flexodomains, which are similar to optical gratings and can be controlled by the amplitude of applied voltage and temperature, were verified through polarizing microscopy and light diffraction techniques. The properties of the optical grating induced by a bent-core nematic liquid crystal in planar cells with varied cell gaps and pretilt angles were studied. The period of optical grating decreases with the increase in the amplitude of the applied voltage and pretilt angle. In addition, the period increases with the increase in cell gap and temperature. The period of optical grating has a linear relationship with temperature. The continuously adjustable period has the potential to become an important and extended application of optical grating.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

12 February 2018: Typographical corrections were made to the author listing and author affiliations.


OSA Recommended Articles
Polarity-dependent bistable optical grating in chiral bent-core nematic liquid crystals

Hong-Zhen Jing, Ying Xiang, Ming-Ya Xu, Zhi-Dong Zhang, Zhengdong Cheng, Dong Shen, Zhi-Gang Zheng, Jian-Lin Li, Meng-jie Zhou, Everett Wang, Yan-Qing Wang, and Yin-Hua Cai
Opt. Mater. Express 6(8) 2584-2592 (2016)

Domain structures as optical gratings controlled by electric field in a bent-core nematic

Ming-Ya Xu, Meng-jie Zhou, Ying Xiang, Péter Salamon, Nándor Éber, and Ágnes Buka
Opt. Express 23(12) 15224-15234 (2015)

Observation of the photorefractive effects in bent-core liquid crystals

Ying Xiang, Yi-Kun Liu, Zhi-Yong Zhang, Hong-Jun You, Tian Xia, Everett Wang, and Zheng-Dong Cheng
Opt. Express 21(3) 3434-3444 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [Crossref]
  2. H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  3. J. Kim, J. H. Suh, B. Y. Lee, S. U. Kim, and S. D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
    [Crossref] [PubMed]
  4. T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
    [Crossref]
  5. R. G. Lindquist, T. M. Leslie, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, and M. Friends, “High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19(9), 670–672 (1994).
    [Crossref] [PubMed]
  6. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [Crossref] [PubMed]
  7. L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
    [Crossref]
  8. J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
    [Crossref]
  9. S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
    [Crossref]
  10. D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
    [Crossref] [PubMed]
  11. L. Gao, Z. Z. Zheng, J. L. Zhu, W. M. Han, and Y. B. Sun, “Dual-period tunable phase grating based on a single in-plane switching,” Opt. Lett. 41(16), 3775–3778 (2016).
    [Crossref] [PubMed]
  12. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [Crossref]
  13. W. M. Gibbons and S. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
    [Crossref]
  14. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
    [Crossref] [PubMed]
  15. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
    [Crossref] [PubMed]
  16. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [Crossref]
  17. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  18. M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
    [Crossref] [PubMed]
  19. Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
    [Crossref]
  20. A. Buka and N. Eber, Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperical College, 2013).
  21. R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
    [Crossref]
  22. L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970).
  23. Y. Xiang, Y. K. Liu, Z. Y. Zhang, H. J. You, T. Xia, E. Wang, and Z. D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
    [Crossref] [PubMed]
  24. Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
    [Crossref] [PubMed]
  25. B. Kundu, R. Pratibha, and N. V. Madhusudana, “Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules,” Phys. Rev. Lett. 99(24), 247802 (2007).
    [Crossref] [PubMed]
  26. M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
    [Crossref] [PubMed]
  27. M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
    [Crossref] [PubMed]
  28. P. Sathyanarayana, B. K. Sadashiva, and S. Dhara, “Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules,” Soft Matter 7(18), 8556–8560 (2011).
    [Crossref]
  29. S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
    [Crossref]
  30. P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
    [Crossref] [PubMed]
  31. P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
    [Crossref] [PubMed]
  32. M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
    [Crossref] [PubMed]
  33. G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
    [Crossref]
  34. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating space,” J. Opt. Soc. Am. 68(6), 806–809 (1978).
    [Crossref]
  35. A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
    [Crossref]
  36. L. Tan, J. Y. Ho, and H. S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 324–490 (2012).
    [Crossref]

2017 (1)

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (1)

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

2013 (2)

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Y. Xiang, Y. K. Liu, Z. Y. Zhang, H. J. You, T. Xia, E. Wang, and Z. D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

2012 (4)

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[Crossref] [PubMed]

L. Tan, J. Y. Ho, and H. S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 324–490 (2012).
[Crossref]

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

2011 (3)

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

P. Sathyanarayana, B. K. Sadashiva, and S. Dhara, “Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules,” Soft Matter 7(18), 8556–8560 (2011).
[Crossref]

2010 (1)

P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
[Crossref] [PubMed]

2008 (2)

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
[Crossref]

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

2007 (1)

B. Kundu, R. Pratibha, and N. V. Madhusudana, “Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules,” Phys. Rev. Lett. 99(24), 247802 (2007).
[Crossref] [PubMed]

2005 (2)

H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

2004 (1)

2003 (1)

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

2000 (2)

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[Crossref] [PubMed]

1997 (1)

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

1995 (2)

A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

1994 (3)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

W. M. Gibbons and S. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

R. G. Lindquist, T. M. Leslie, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, and M. Friends, “High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19(9), 670–672 (1994).
[Crossref] [PubMed]

1978 (1)

1972 (1)

T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[Crossref]

1970 (1)

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970).

1969 (1)

R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Bailey, C. A.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Bos, P. J.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Bota, A.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Buka, A.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Buka, Á.

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Cama, A.

A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
[Crossref]

Caputo, R.

Carroll, T. O.

T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[Crossref]

Castles, F.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Chen, R. T.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Chen, X. N.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Cheng, Z. D.

Chigrinov, V.

Coles, H. J.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Cui, H. Q.

De Sio, L.

Dhara, S.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

P. Sathyanarayana, B. K. Sadashiva, and S. Dhara, “Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules,” Soft Matter 7(18), 8556–8560 (2011).
[Crossref]

Dodge, M. R.

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

Eber, N.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Éber, N.

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Fan, Y. H.

H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Ferrarini, A.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Fodor-Csorba, K.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Friends, M.

Galatola, P.

A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
[Crossref]

Gao, L.

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Gaylord, T. K.

Gibbons, W. M.

W. M. Gibbons and S. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

Gleeson, H. F.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Gleeson, J. T.

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

Greco, C.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Gu, L. L.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Gu, Z.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
[Crossref]

Gvozdovskyy, I.

Han, W. M.

Hands, P. J. W.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Hiremath, U. S.

P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
[Crossref] [PubMed]

Ho, J. Y.

L. Tan, J. Y. Ho, and H. S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 324–490 (2012).
[Crossref]

Howley, B.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Hu, W.

Jakli, A.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Jákli, A.

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

Jampani, V. S. R.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

Jarem, J. M.

Jiang, W.

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

Jing, H. Z.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Kaur, S.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Kim, J.

Kim, S. U.

Kowel, S. T.

Krishnamurthy, K. S.

P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
[Crossref] [PubMed]

Kulick, J. H.

Kundu, B.

B. Kundu, R. Pratibha, and N. V. Madhusudana, “Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules,” Phys. Rev. Lett. 99(24), 247802 (2007).
[Crossref] [PubMed]

Kwok, H. S.

L. Tan, J. Y. Ho, and H. S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 324–490 (2012).
[Crossref]

Lavrentovich, O. D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Le, K. V.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

Lee, B. Y.

Lee, S. D.

Lehmann, M.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Leslie, T. M.

Lin, X. W.

Lin, Y. H.

H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Lindquist, R. G.

Liu, H.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Liu, Y. K.

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Z. Y. Zhang, H. J. You, T. Xia, E. Wang, and Z. D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Lu, Y. Q.

Madhusudana, N. V.

B. Kundu, R. Pratibha, and N. V. Madhusudana, “Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules,” Phys. Rev. Lett. 99(24), 247802 (2007).
[Crossref] [PubMed]

Magnusson, R.

Majumdar, M.

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

Maker, P.

Meyer, R. B.

R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Morris, S. M.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Muller, R.

Musevic, I.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

Nair, G. G.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Neubert, M. E.

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

Nordin, G. P.

Oldano, C.

A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
[Crossref]

Petschek, R. G.

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

Pratibha, R.

B. Kundu, R. Pratibha, and N. V. Madhusudana, “Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules,” Phys. Rev. Lett. 99(24), 247802 (2007).
[Crossref] [PubMed]

Psaltis, D.

Rajteri, M.

A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
[Crossref]

Ren, H. W.

H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Rosenblatt, C.

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

Sadashiva, B. K.

P. Sathyanarayana, B. K. Sadashiva, and S. Dhara, “Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules,” Soft Matter 7(18), 8556–8560 (2011).
[Crossref]

Salamon, P.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

Sathyanarayana, P.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

P. Sathyanarayana, B. K. Sadashiva, and S. Dhara, “Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules,” Soft Matter 7(18), 8556–8560 (2011).
[Crossref]

Seltmann, J.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Serbina, M.

Skarabot, M.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

Sprunt, S.

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

Srivastava, A.

Su, X. Y.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
[Crossref]

Subacius, D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Suh, J. H.

Sukhov, A. V.

Sun, J. T.

Sun, S.

W. M. Gibbons and S. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

Sun, Y. B.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Tadapatri, P.

P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
[Crossref] [PubMed]

Takezoe, H.

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

Tan, G.

Tan, L.

L. Tan, J. Y. Ho, and H. S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 324–490 (2012).
[Crossref]

Taushanoff, S.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Tian, L.

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Umeton, C.

Vajda, A.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Varga, Z.

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Veltri, A.

Vistin, L. K.

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970).

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Walsh, M. E.

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

Wang, E.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Z. Y. Zhang, H. J. You, T. Xia, E. Wang, and Z. D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Wang, X.

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

Wilson, D.

Wu, S. T.

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Xia, T.

Xiang, Y.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Z. Y. Zhang, H. J. You, T. Xia, E. Wang, and Z. D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Xu, D.

Xu, F.

Xu, M. Y.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

M. Y. Xu, M. J. Zhou, Y. Xiang, P. Salamon, N. Éber, and Á. Buka, “Domain structures as optical gratings controlled by electric field in a bent-core nematic,” Opt. Express 23(12), 15224–15234 (2015).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Xu, P.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
[Crossref]

Yamaguchi, R.

Yang, J. B.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
[Crossref]

Yaroshchuk, O.

Ye, W. J.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Yelamaggad, C. V.

P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
[Crossref] [PubMed]

You, H. J.

Zhang, Z. D.

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Zhang, Z. Y.

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Z. Y. Zhang, H. J. You, T. Xia, E. Wang, and Z. D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[Crossref] [PubMed]

Zheng, Z. Z.

Zhou, M. J.

Zhu, J. L.

Adv. Mater. (1)

G. G. Nair, C. A. Bailey, S. Taushanoff, K. Fodor-Csorba, A. Vajda, Z. Varga, A. Bota, and A. Jakli, “Electrically Tunable Color by Using Mixtures of Bent-Core and Rod-Shaped Molecules,” Adv. Mater. 20(16), 3138–3142 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett. 87(20), 201106 (2005).
[Crossref]

S. M. Morris, D. J. Gardiner, F. Castles, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Fast-switching phase gratings using in-plane addressed short-pitch polymer stabilized chiral nematic liquid crystals,” Appl. Phys. Lett. 99(25), 253502 (2011).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

H. W. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

W. M. Gibbons and S. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

L. Tan, J. Y. Ho, and H. S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 324–490 (2012).
[Crossref]

J. Appl. Phys. (1)

T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Kaur, L. Tian, H. Liu, C. Greco, A. Ferrarini, J. Seltmann, M. Lehmann, and H. F. Gleeson, “The elastic and optical properties of a bent-core thiadiazole nematic liquid crystal: the role of the bend angle,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(13), 2416–2425 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

P. Tadapatri, U. S. Hiremath, C. V. Yelamaggad, and K. S. Krishnamurthy, “Permittivity, conductivity, elasticity, and viscosity measurements in the nematic phase of a bent-core liquid crystal,” J. Phys. Chem. B 114(5), 1745–1750 (2010).
[Crossref] [PubMed]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

A. Cama, P. Galatola, C. Oldano, and M. Rajteri, “Non-Linear theory of flexoelectrically induced periodic distortions in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 261(1), 177–185 (1995).
[Crossref]

Opt. Commun. (1)

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15), 3969–3976 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Appl. (1)

Y. Xiang, H. Z. Jing, Z. D. Zhang, W. J. Ye, M. Y. Xu, E. Wang, P. Salamon, N. Eber, and A. Buka, “Tunable optical grating based on the flexoelectric effect in a bent-core nematic liquid crystal,” Phys. Rev. Appl. 7(6), 064032 (2017).
[Crossref]

Phys. Rev. E (2)

P. Sathyanarayana, V. S. R. Jampani, M. Skarabot, I. Musevic, K. V. Le, H. Takezoe, and S. Dhara, “Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules,” Phys. Rev. E 85(1), 011702 (2012).
[Crossref] [PubMed]

M. R. Dodge, R. G. Petschek, C. Rosenblatt, M. E. Neubert, and M. E. Walsh, “Light scattering investigation above the nematic-smectic-A phase transition in binary mixtures of calamitic and bent-core mesogens,” Phys. Rev. E 68(3), 031703 (2003).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. Majumdar, P. Salamon, A. Jákli, J. T. Gleeson, and S. Sprunt, “Elastic constants and orientational viscosities of a bent-core nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(3), 031701 (2011).
[Crossref] [PubMed]

Y. Xiang, Y. K. Liu, Á. Buka, N. Éber, Z. Y. Zhang, M. Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

M. R. Dodge, C. Rosenblatt, R. G. Petschek, M. E. Neubert, and M. E. Walsh, “Bend elasticity of mixtures of V-shaped molecules in ordinary nematogens,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(44 Pt A), 5056–5063 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

B. Kundu, R. Pratibha, and N. V. Madhusudana, “Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules,” Phys. Rev. Lett. 99(24), 247802 (2007).
[Crossref] [PubMed]

R. B. Meyer, “Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Soft Matter (1)

P. Sathyanarayana, B. K. Sadashiva, and S. Dhara, “Splay-bend elasticity and rotational viscosity of liquid crystal mixtures of rod-like and bent-core molecules,” Soft Matter 7(18), 8556–8560 (2011).
[Crossref]

Sov. Phys. Crystallogr. (1)

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970).

Other (1)

A. Buka and N. Eber, Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperical College, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Structural formula of BCN LC compound 2,5-bis{4-[difluoro(4-heptylphenyl)methoxy] phenyl}-1,3,4-oxadiazole (7P-CF2O-ODBP).
Fig. 2
Fig. 2 cross-sectional structure of a planar cell.
Fig. 3
Fig. 3 Photomicrograph of optical grating in the first cell changes with increased voltage U, where the temperature T-TNI = −15 °C; (A) and (P) refer to the analyzer and polarizer, respectively, and are orthogonal to each other. The initial director n indicates the rubbing direction of the PI. Sizes of all photomicrographs are 50 μm × 50 μm. (a) U = 18 V, Λ = 2.82 μm; (b) U = 24 V, Λ = 1.99 μm; (c) U = 30 V, Λ = 1.54 μm; and (d) U = 36 V, Λ = 1.24 μm.
Fig. 4
Fig. 4 Photomicrograph of optical grating in the second cell changes with increased voltage U, where the temperature T-TNI = −15 °C; (A) and (P) refer to the analyzer and polarizer, respectively, and are orthogonal to each other; initial director n indicates the rubbing direction of the PI. Sizes of all photomicrographs are 50 μm × 50 μm; (a) U = 18 V, Λ = 5.41 μm; (b) U = 24 V, Λ = 4.13 μm; (c) U = 30 V, Λ = 3.05 μm; and (d) U = 36 V, Λ = 2.55 μm.
Fig. 5
Fig. 5 Period of optical grating Λ varies with voltage U under different temperature T-TNI in first cell and second cell.
Fig. 6
Fig. 6 Photomicrograph of optical grating reflected in changed period Λ in the third cell changes with the increase in temperature T-TNI, where the external voltage is U = 15 V; (A) and (P) refer to the analyzer and polarizer, respectively, and are orthogonal to each other. The initial director n indicates the rubbing direction of PI. (a) T-TNI = −30 °C, Λ = 2.71 μm; (b) T-TNI = −24 °C, Λ = 2.78 μm; (c) T-TNI = −18 °C, Λ = 2.94 μm; (d) T-TNI = −12 °C, Λ = 3.13 μm.
Fig. 7
Fig. 7 Period of optical grating Λ in third cell varies with temperature T-TNI under different voltages U.
Fig. 8
Fig. 8 Period of optical grating Λ in planar cell of numbers 1, 2, 5, and 6 varies with voltage U at different temperatures T-TNI.
Fig. 9
Fig. 9 Period of optical grating Λ in the first and third cells varies with voltage U at different temperatures T-TNI: (a) T-TNI = −20 °C and (b) T-TNI = −10 °C.
Fig. 10
Fig. 10 Period of optical grating in the second and fourth cells varies with voltage U at different temperatures T-TNI: (a) T-TNI = −20 °C and (b) T-TNI = −10 °C.
Fig. 11
Fig. 11 Period Λ in the third and fourth cells and the constant C43, which reflects the relationship of the period Λ and cell gap d, varies with voltage U at different temperatures T-TNI: (a) T-TNI = −25 °C and (b) T-TNI = −15 °C.
Fig. 12
Fig. 12 Morphologies of optical grating reflected in the period Λ and diffraction spots in the fourth cell vary with voltage, where temperature T-TNI = −10 °C; (A) and (P) refer to the analyzer and polarizer, respectively, and are orthogonal to each other. The initial director n indicates the rubbing direction of the PI. The sizes of all photomicrographs are 50 μm × 50 μm. (a) U = 10 V, Λ = ∞; (b) U = 14 V, Λ = 6.71 μm; (c) U = 18 V, Λ = 5.67 μm; (d) U = 22 V, Λ = 4.72 μm; (e) U = 26 V, Λ = 3.80 μm; (f) U = 30 V, Λ = 3.25 μm; (g) U = 34 V, Λ = 2.86 μm; and (h) U = 38 V, Λ = 2.48 μm.
Fig. 13
Fig. 13 First-order diffraction efficiency η1 of the optical grating induced by the BCN LC in planar cells which varies with voltage U at different temperatures T-TNI. Fig: (a) third and (b) fourth cells.

Tables (1)

Tables Icon

Table 1 Planar cells with different cell gaps, friction torques, and pretilt angles at boundaries.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ ( T ) = A ( θ , d ) ( T - T NI ) + B ( U ) ,
Λ 2 Λ 1 = C 21 d 2 d 1 ,
C 43 = d 3 d 4 Λ 4 Λ 3 .

Metrics