Abstract

Thermal emission control has been attracting increased attention in both fundamental science and many applications including infrared sensing, radiative cooling and thermophotovoltaics. In this paper, a tunable dual-band thermal emitter including phase-changing material Ge2Sb2Te5 (GST) is experimentally demonstrated. Two emission peak wavelengths are at 7.36 μm and 5.40 μm at amorphous phase, and can be continuously tuned to 10.01 μm and 7.56 μm while GST is tuned to crystalline phase. Compared with other dual-band metamaterial emitters, this tunable dual-band thermal emitter is only composed of an array of single-sized GST nanodisks (on a gold film), which can greatly simplify the design and manufacturing process, and pave the way towards dynamical thermal emission control.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast tunable chirped phase-change metamaterial with a low power

Tun Cao, Chenwei Wei, and Libang Mao
Opt. Express 23(4) 4092-4105 (2015)

Realization of narrowband thermal emission with optical nanostructures

Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Optica 2(1) 27-35 (2015)

Hybrid phase-change plasmonic crystals for active tuning of lattice resonances

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk'yanchuk, S. A. Maier, and M. H. Hong
Opt. Express 21(11) 13691-13698 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
    [Crossref]
  2. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
    [Crossref]
  3. R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).
  4. A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
    [Crossref]
  5. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  6. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
    [Crossref]
  7. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
    [Crossref]
  8. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27 (2015).
    [Crossref]
  9. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
    [Crossref] [PubMed]
  10. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  11. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  12. K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  13. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
    [Crossref]
  14. H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
    [Crossref]
  15. Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
    [Crossref] [PubMed]
  16. C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
    [Crossref]
  17. P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
    [Crossref]
  18. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref] [PubMed]
  19. H. Gao, Z. Zheng, and J. Feng, “Tunable dual-band nearly perfect absorption based on a compound metallic grating,” J. Mod. Opt. 64(3), 294–299 (2017).
    [Crossref]
  20. X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
    [Crossref]
  21. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  22. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  23. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  24. S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
    [Crossref] [PubMed]
  25. J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  26. C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
    [Crossref]
  27. M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
    [Crossref]
  28. J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
    [Crossref]
  29. D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
    [Crossref]
  30. J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
    [Crossref]
  31. C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
    [Crossref]
  32. W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
    [Crossref]
  33. Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
    [Crossref] [PubMed]
  34. C. M. Wang and D. P. Tsai, “Lambertian thermal emitter based on plasmonic enhanced absorption,” Opt. Express 24(16), 18382–18387 (2016).
    [Crossref] [PubMed]
  35. B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
    [Crossref] [PubMed]
  36. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
    [Crossref]
  37. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  38. V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
    [Crossref] [PubMed]
  39. X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
    [Crossref] [PubMed]
  40. K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
    [Crossref]
  41. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
    [Crossref]
  42. Lumerical Solutions Inc, http://www.lumerical.com/tcadproducts/fdtd .
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  44. B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, “In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5,” J. Appl. Phys. 95(3), 924–932 (2004).
    [Crossref]
  45. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
    [Crossref] [PubMed]
  46. Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
    [Crossref]
  47. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  48. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  49. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  50. L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, “Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing,” Anal. Chem. 82(19), 8042–8046 (2010).
    [Crossref] [PubMed]
  51. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  52. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  53. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
    [Crossref] [PubMed]
  54. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref] [PubMed]
  55. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  56. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
    [Crossref] [PubMed]
  57. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  58. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
    [Crossref] [PubMed]
  59. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  60. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  61. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
    [Crossref]

2017 (5)

H. Gao, Z. Zheng, and J. Feng, “Tunable dual-band nearly perfect absorption based on a compound metallic grating,” J. Mod. Opt. 64(3), 294–299 (2017).
[Crossref]

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

2016 (10)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

C. M. Wang and D. P. Tsai, “Lambertian thermal emitter based on plasmonic enhanced absorption,” Opt. Express 24(16), 18382–18387 (2016).
[Crossref] [PubMed]

Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
[Crossref] [PubMed]

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

2015 (13)

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27 (2015).
[Crossref]

Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
[Crossref] [PubMed]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

2014 (5)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

2013 (7)

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

2012 (3)

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

2011 (5)

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

2010 (2)

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, “Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing,” Anal. Chem. 82(19), 8042–8046 (2010).
[Crossref] [PubMed]

2009 (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

2008 (2)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

2007 (1)

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

2004 (1)

B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, “In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5,” J. Appl. Phys. 95(3), 924–932 (2004).
[Crossref]

2002 (2)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

1995 (1)

J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
[Crossref]

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Ali, S. Z.

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Arnold, C.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Ashalley, E.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Atwater, H. A.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Bai, Y.

Bardou, N.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Benisty, H.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Bermel, P.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Bhaskaran, H.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Bhatia, B.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Boltasseva, A.

Bouchon, P.

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

Boutami, S.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Brar, V. W.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Cai, L.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Cane, C.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Catrysse, P. B.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Celanovic, I.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Chan, W. R.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Chen, S.

Chen, Y.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chen, Y. G.

Cheng, B. H.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Cheng, Z.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Choi, M.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Cole, M. T.

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

Collin, S.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Costantini, D.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Coutrot, A. L.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Cui, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

De Hosson, J. Th. M.

B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, “In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5,” J. Appl. Phys. 95(3), 924–932 (2004).
[Crossref]

De Luca, A.

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Decastro, A. J.

J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
[Crossref]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Ding, J.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Du, K.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Fan, S.

Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Fasoli, A.

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

Feng, D.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Feng, J.

H. Gao, Z. Zheng, and J. Feng, “Tunable dual-band nearly perfect absorption based on a compound metallic grating,” J. Mod. Opt. 64(3), 294–299 (2017).
[Crossref]

Fonseca, L.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Fujimura, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Gao, H.

H. Gao, Z. Zheng, and J. Feng, “Tunable dual-band nearly perfect absorption based on a compound metallic grating,” J. Mod. Opt. 64(3), 294–299 (2017).
[Crossref]

Garin, M.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Gong, W.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Govorov, A.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Gracia, I.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Greffet, J.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Greffet, J. J.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Groot, W. M. G.

B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, “In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5,” J. Appl. Phys. 95(3), 924–932 (2004).
[Crossref]

Guler, U.

Guo, Y.

Guo, Z. H.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Haïdar, R.

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

Han, S. E.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Hao, Q.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

Hatade, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hong, M. H.

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Hsiao, H.

W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
[Crossref]

Hsu, P. C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Huang, N.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
[Crossref]

Huang, T. J.

Huang, W.

W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
[Crossref]

Hugonin, J. P.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Hupp, J. T.

L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, “Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing,” Anal. Chem. 82(19), 8042–8046 (2010).
[Crossref] [PubMed]

Ikeda, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Jaeck, J.

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

Jang, M. S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Ji, J.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Jiang, Y.

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Ju, D.

Jun Huang, T.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

Kanakugi, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kao, T. S.

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Khoo, I.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

Khoo, I. C.

Kildishev, A.

Kim, L.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Kim, S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Kiraly, B.

Kitagawa, S.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Kooi, B. J.

B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, “In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5,” J. Appl. Phys. 95(3), 924–932 (2004).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kreno, L. E.

L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, “Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing,” Anal. Chem. 82(19), 8042–8046 (2010).
[Crossref] [PubMed]

Lagutchev, A.

Lapsley, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

Lee, S.

W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
[Crossref]

Lefebvre, A.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Lenert, A.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, D.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Li, P.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Li, Q.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Li, R. K.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Li, X.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
[Crossref]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

Li, Z. Z.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Liang, C.

H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
[Crossref]

Liao, C. Y.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Ling, F. R.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Liu, B.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Liu, C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Liu, H.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
[Crossref]

Liu, J.

Liu, L.

Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
[Crossref] [PubMed]

H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
[Crossref]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, X.

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Lopez, F.

J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Lu, J.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Lu, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

Lu, Y.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Luk’yanchuk, B.

Luo, C. Y.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Luo, Q.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Luo, X. G.

Lyu, Y.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Maier, S. A.

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Makhsiyan, M.

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

Malis, O.

Marco, S.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Marquier, F.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Marquier, F. O.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Mason, J.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Melendez, J.

J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
[Crossref]

Meneses, J.

J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
[Crossref]

Milne, W. I.

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Nagpal, P.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Ng, B.

Nker, B. J.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Norris, D. J.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Okada, M.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Padilla, W. J.

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pardo, F.

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Park, J. H.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

Pelouard, J.

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Peng, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Pernice, W. H. P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Qiu, M.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Qu, Y.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Raman, A. P.

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Rao, Y. K.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Ríos, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Rubio, R.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Sabate, N.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Santander, J.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Scherer, T. C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

Shen, S.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Sherrott, M. C.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Smith, S.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Soljacic, M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Song, A. Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Song, S.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Song, Z.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Stegmaier, M.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Sui, Y.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Sun, Q.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
[Crossref]

Sweatlock, L. A.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Tang, M.

W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tsai, D. P.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

C. M. Wang and D. P. Tsai, “Lambertian thermal emitter based on plasmonic enhanced absorption,” Opt. Express 24(16), 18382–18387 (2016).
[Crossref] [PubMed]

Tsai, W.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Udina, S.

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Udrea, F.

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

Van Duyne, R. P.

L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, “Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing,” Anal. Chem. 82(19), 8042–8046 (2010).
[Crossref] [PubMed]

Wang, C.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Wang, C. M.

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, E. N.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, H. X.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Wang, Z.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Wasserman, D.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Wright, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wu, J.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Wu, W.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Xie, J.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Xue, J.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Yamamoto, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yao, G.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Yao, J. Q.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Yeh, T.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Yen, T.

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yu, B.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Yu, P.

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Yuan, L.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Yue, J.

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zhai, H.

H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhan, C.

H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
[Crossref]

Zhang, B.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Zhang, J.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhao, L.

Zhao, Y.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19(16), 15221–15228 (2011).
[Crossref] [PubMed]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zheng, Z.

H. Gao, Z. Zheng, and J. Feng, “Tunable dual-band nearly perfect absorption based on a compound metallic grating,” J. Mod. Opt. 64(3), 294–299 (2017).
[Crossref]

Zhu, L.

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Zhu, X.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Zou, H.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

ACS Nano (2)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Adv. Mater. (2)

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, “Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing,” Anal. Chem. 82(19), 8042–8046 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (9)

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

W. Huang, H. Hsiao, M. Tang, and S. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109(6), 63107 (2016).
[Crossref]

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. Khoo, and T. Jun Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100(5), 53119 (2012).
[Crossref]

M. Makhsiyan, P. Bouchon, J. Jaeck, J. Pelouard, and R. Haïdar, “Shaping the spatial and spectral emissivity at the diffraction limit,” Appl. Phys. Lett. 107(25), 251103 (2015).
[Crossref]

C. Y. Liao, C. Wang, B. H. Cheng, Y. Chen, W. Tsai, D. Feng, T. Yeh, T. Yen, and D. P. Tsai, “Quasi-coherent thermal radiation with multiple resonant plasmonic cavities,” Appl. Phys. Lett. 109(26), 261101 (2016).
[Crossref]

J. Appl. Phys. (2)

B. J. Kooi, W. M. G. Groot, and J. Th. M. De Hosson, “In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5,” J. Appl. Phys. 95(3), 924–932 (2004).
[Crossref]

A. De Luca, M. T. Cole, A. Fasoli, S. Z. Ali, F. Udrea, and W. I. Milne, “Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes,” J. Appl. Phys. 113(21), 214907 (2013).
[Crossref]

J. Electromagnet. Wave (1)

H. Zhai, C. Zhan, L. Liu, and C. Liang, “A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability,” J. Electromagnet. Wave 29(6), 774–785 (2015).
[Crossref]

J. Mod. Opt. (1)

H. Gao, Z. Zheng, and J. Feng, “Tunable dual-band nearly perfect absorption based on a compound metallic grating,” J. Mod. Opt. 64(3), 294–299 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

P. Yu, J. Wu, E. Ashalley, A. Govorov, and Z. Wang, “Dual-band absorber for multispectral plasmon-enhanced infrared photodetection,” J. Phys. D Appl. Phys. 49(36), 365101 (2016).
[Crossref]

Laser Photonics Rev. (1)

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Light Sci. Appl. (1)

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nano Lett. (3)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Nat. Energy (1)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Nat. Mater. (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. C. Scherer, D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic nonvolatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Nature (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J. Nker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2), 101–114 (2002).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Photonics Nanosctruct. (1)

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photonics Nanosctruct. 15, 81–88 (2015).
[Crossref]

Phys. Rev. Appl. (1)

D. Costantini, A. Lefebvre, A. L. Coutrot, I. Moldovan-Doyen, J. P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J. J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 014023 (2015).
[Crossref]

Phys. Rev. B (2)

C. Arnold, F. O. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. Pelouard, and J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Science (2)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

J. Melendez, A. J. Decastro, F. Lopez, and J. Meneses, “Spectrally Selective Gas Cell For Electrooptical Infrared Compact Multigas Sensor,” Sens. Actuators A Phys. 47(1), 417–421 (1995).
[Crossref]

Sensor Actuat. Biol. Chem. (1)

R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, “Non-selective NDIR array for gas detection,” Sensor Actuat. Biol. Chem. 127(1), 69–73 (2007).

Solid State Commun. (1)

C. Y. Luo, Z. Z. Li, Z. H. Guo, J. Yue, Q. Luo, G. Yao, J. Ji, Y. K. Rao, R. K. Li, D. Li, H. X. Wang, J. Q. Yao, and F. R. Ling, “Tunable metamaterial dual-band terahertz absorber,” Solid State Commun. 222, 32–36 (2015).
[Crossref]

Other (2)

Lumerical Solutions Inc, http://www.lumerical.com/tcadproducts/fdtd .

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic and (b) SEM images of the fabricated thermal emitter incorporating phase changing material GST. The thermal emitter is composed of the bottom gold film and the top GST nanodisk array.

Fig. 2
Fig. 2

(a) and (b) are experimental and simulated emissivities of the thermal emitter in the normal direction. The black and red lines are for the aGST and cGST samples, respectively. (c) A-D represent the peak wavelength of the aGST and cGST thermal emitters. The colormaps represent the normalized magnetic field intensities and the arrows represent the normalized electric-field vector distribution at corresponding wavelength.

Fig. 3
Fig. 3

Tunability of the dual-band thermal emitter through the intermediate phases. (a) Experimental results of continuously tuning emissivities of the thermal emitter at different baking temperatures in the normal direction. (b) Simulated emissivities of the thermal emitter at corresponding crystallization fraction in the normal direction. Extracted (c) bandwidths and (d) peak emissivities of the 1st and 3rd order magnetic resonances versus crystallization fraction in the normal direction.

Fig. 4
Fig. 4

Simulated emission spectra of the thermal emitter for (a) TE and (b) TM polarization at different emission angles (0°, 5°, 10° and 20°). Experimental emission spectra of the thermal emitter for (c) TE and (d) TM polarization at different emission angles (0°, 5°, 10° and 20°). Simulated emission spectra as functions of emission angle and wavelength for (e) TE and (f) TM polarization. (g) A-D represent normalized magnetic field intensities for TM polarization at 10° and 20° emission angle indicated in Fig. 4(f).