Abstract

The use of existing optical resolution photoacoustic microscopy (ORPAM) has been limited to small organs or part of large organs due to the millimeter-scale field of view (FOV) in both lateral and axial directions. Here, we report a large-field-of-view ORPAM (L-ORPAM) using a combination of a new scanning mechanism and an ultrafast pulsed laser. Phantom and in vivo experiments show that L-ORPAM has a spatial FOV of 40 mm in lateral and 12 mm in axial, which expends the effective imaging domain to one order that of existing ORPAMs. To show the advantages of L-ORPAM, we apply it to imaging vasculatures of both brain and ears simultaneously in mice, and to visualizing intestinal vasculatures in rats. The result suggests that L-ORPAM has sufficient contrast, resolution and spatial FOV to carry out studies of large rodents.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultracompact high-resolution photoacoustic microscopy

Qian Chen, Heng Guo, Tian Jin, Weizhi Qi, Huikai Xie, and Lei Xi
Opt. Lett. 43(7) 1615-1618 (2018)

A handheld microscope integrating photoacoustic microscopy and optical coherence tomography

Wei Qin, Qian Chen, and Lei Xi
Biomed. Opt. Express 9(5) 2205-2213 (2018)

Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

Thomas J. Allen, Olumide Ogunlade, Edward Zhang, and Paul C. Beard
Biomed. Opt. Express 9(2) 650-660 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  2. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  3. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  4. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  5. Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
    [Crossref] [PubMed]
  6. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  7. H. Wang, X. Yang, Y. Liu, B. Jiang, and Q. Luo, “Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective,” Opt. Express 21(20), 24210–24218 (2013).
    [Crossref] [PubMed]
  8. W. Song, W. Zheng, R. Liu, R. Lin, H. Huang, X. Gong, S. Yang, R. Zhang, and L. Song, “Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution,” Biomed. Opt. Express 5(12), 4235–4241 (2014).
    [Crossref] [PubMed]
  9. Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41(7), 1636–1639 (2016).
    [Crossref] [PubMed]
  10. L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
    [Crossref] [PubMed]
  11. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
    [Crossref] [PubMed]
  12. Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
    [Crossref]
  13. H. Kang, S. W. Lee, E. S. Lee, S. H. Kim, and T. G. Lee, “Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy,” Biomed. Opt. Express 6(12), 4650–4660 (2015).
    [Crossref] [PubMed]
  14. L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
    [Crossref] [PubMed]
  15. B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
    [Crossref] [PubMed]
  16. W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
    [Crossref] [PubMed]
  17. T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
    [Crossref] [PubMed]
  18. T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.
  19. H. Guo, C. Song, H. Xie, and L. Xi, “Photoacoustic endomicroscopy based on a MEMS scanning mirror,” Opt. Lett. 42(22), 4615–4618 (2017).
    [Crossref] [PubMed]
  20. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref] [PubMed]
  21. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
    [Crossref] [PubMed]
  22. L. Zhu, L. Li, L. Gao, and L. V. Wang, “Multi-view optical resolution photoacoustic microscopy,” Optica 1(4), 217–222 (2014).
    [Crossref] [PubMed]

2017 (3)

2016 (4)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41(7), 1636–1639 (2016).
[Crossref] [PubMed]

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

2015 (3)

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

H. Kang, S. W. Lee, E. S. Lee, S. H. Kim, and T. G. Lee, “Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy,” Biomed. Opt. Express 6(12), 4650–4660 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Chen, R.

Chen, Z.

Gao, L.

Gong, X.

Guo, H.

He, Y.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

Hu, S.

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Huang, C.-H.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

Huang, H.

Jiang, B.

Jiang, H.

W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
[Crossref] [PubMed]

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.

Jin, T.

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.

Kang, H.

Ke, B.

Kim, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Kim, S. H.

Lee, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Lee, E. S.

Lee, S. W.

Lee, T. G.

Li, L.

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

L. Zhu, L. Li, L. Gao, and L. V. Wang, “Multi-view optical resolution photoacoustic microscopy,” Optica 1(4), 217–222 (2014).
[Crossref] [PubMed]

B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
[Crossref] [PubMed]

Lim, G.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Lin, L.

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Lin, R.

Liu, R.

Liu, Y.

Luo, Q.

Maslov, K.

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Park, K.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Qi, W.

W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
[Crossref] [PubMed]

Rao, B.

Rong, J.

W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
[Crossref] [PubMed]

Shi, J.

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

Shung, K. K.

Soetikno, B. T.

Song, C.

Song, L.

Song, W.

Wang, H.

Wang, L.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Yeh, S. Hu, L. Wang, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, K. I. Maslov, and L. V. Wang, “Fully motorized optical-resolution photoacoustic microscopy,” Opt. Lett. 39(7), 2117–2120 (2014).
[Crossref] [PubMed]

L. Zhu, L. Li, L. Gao, and L. V. Wang, “Multi-view optical resolution photoacoustic microscopy,” Optica 1(4), 217–222 (2014).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

Wong, T. T. W.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Xi, L.

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

H. Guo, C. Song, H. Xie, and L. Xi, “Photoacoustic endomicroscopy based on a MEMS scanning mirror,” Opt. Lett. 42(22), 4615–4618 (2017).
[Crossref] [PubMed]

W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.

Xie, H.

H. Guo, C. Song, H. Xie, and L. Xi, “Photoacoustic endomicroscopy based on a MEMS scanning mirror,” Opt. Lett. 42(22), 4615–4618 (2017).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.

Xing, D.

Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Opt. Lett. 41(7), 1636–1639 (2016).
[Crossref] [PubMed]

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Xu, S.

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yang, S.

Yang, X.

Yao, J.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

Yao, L.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.

Yeh, C.

Yuan, Y.

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Zhang, C.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

Zhang, P.

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

Zhang, R.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

W. Song, W. Zheng, R. Liu, R. Lin, H. Huang, X. Gong, S. Yang, R. Zhang, and L. Song, “Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution,” Biomed. Opt. Express 5(12), 4235–4241 (2014).
[Crossref] [PubMed]

Zheng, W.

Zhou, Q.

Zhu, L.

Zou, J.

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[Crossref]

Biomed. Opt. Express (2)

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

L. Lin, P. Zhang, S. Xu, J. Shi, L. Li, J. Yao, L. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 22(4), 041002 (2016).
[Crossref] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

W. Qi, T. Jin, J. Rong, H. Jiang, and L. Xi, “Inverted multiscale optical resolution photoacoustic microscopy,” J. Biophotonics 10(12), 1580–1585 (2017).
[Crossref] [PubMed]

Nat. Methods (3)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Optica (1)

Sci. Rep. (2)

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5(1), 7932 (2015).
[Crossref] [PubMed]

Y. He, L. Wang, J. Shi, J. Yao, L. Li, R. Zhang, C.-H. Huang, J. Zou, and L. V. Wang, “In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,” Sci. Rep. 6(1), 39616 (2016).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (1)

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonicse201700250 (2017.

Supplementary Material (5)

NameDescription
» Visualization 1       An animation depicts the scanning mechanism.
» Visualization 2       The MAP images of the suture line phantom sequentially projected in different depth.
» Visualization 3       Close-up views of the full-view MAP image of carbon fiber phantom in different locations.
» Visualization 4       The images by projecting the volume data of mouse brain and ears from different depths for the entire and selected FOVs
» Visualization 5       The volume rendering of the intestine in different views and MAP images projected sequentially from different depths.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic and scanning mechanism of L-ORPAM. (a) Illustration of system configuration. PC: personal computer, DAQ: data acquisition card, L1: lens 1, L2: lens 2, PH: pinhole, CG: cover glass, UST; ultrasound transducer. (b) The layout of the imaging interface. SMF: single mode fiber, CG: cover glass, MMS: manual multidimensional stage, UST: ultrasound transducer. (c) Close-up view of the acoustic detection unit. (d) Profile of sensitivity distribution in the acoustic focal zone of the cylindrically focused ultrasound transducer. (e) Illustration of the scanning mechanism. Black arrows: optical scan line, green bar: acoustic focal zone, dotted arrow: rotational scanning trace of the optical scan line and acoustic focal zone. The animation in Visualization 1 depicts the scanning mechanism of optical focus and acoustic focal zone.
Fig. 2
Fig. 2 Evaluation of system performance. (a) Photograph of the grid phantom used to estimate the lateral FOV of L-ORPAM. (b) Maximum amplitude projection (MAP) image of the grid phantom. (c) MAP image of a suture line phantom used to estimate the axial FOV of L-ORPAM. Visualization 2 shows sequential MAP images projected from different depths. (d) A selected cross-sectional image consist of two B-scans with an angle of 180 degrees of the suture line phantom as indicated by the dashed yellow line in c. The yellow dashed line indicates the position of the imaging plane. (e) Axial sensitivity of the transducer. (f) Distribution of lateral resolution as the function of radius of FOV. (g) Distribution of lateral resolution in different depths. (h) A Gaussian-fitted profile of a typical A-line used to estimate the axial resolution of L-ORPAM.
Fig. 3
Fig. 3 L-ORPAM image of a carbon fiber phantom. (a) MAP image of the carbon fiber phantom with a frame size of 4000 × 4000 points in lateral FOV. (b) A selected cross-sectional image consist of two B-scans with an angle of 180 degrees along the dashed yellow line in (a), the scale bar is the same as (a). (c) and (d), Close-up views of sub regions indicated by two dashed yellow circles in (a). Figure 3(c) shows the enlarged view of region 1 and (d) presents the enlarged view of region 2. Visualization 3 shows the enlarged views of the MAP image in different locations.
Fig. 4
Fig. 4 In vivo L-ORPAM imaging of a mouse brain and two ears simultaneously. (a) MAP image of the brain and ears with an effective image domain of ϕ 40 mm × 6 mm. (b) and (c) Close-up views of two selected regions in the mouse brain (region 1) and ear (region 2) as indicated by two dashed yellow circles in (a). Visualization 4 displays MAP images projected from different depths for both entire and selected FOVs.
Fig. 5
Fig. 5 In vivo L-ORPAM experiments of intestine in a rat abdomen. (a) Volume rendering of the intestine. The size is 40mm × 40mm × 4.5mm. (b) MAP image of the intestine fulfilling the entire FOV. (c) and (d) Close-up views of two typical regions in Fig. 5(b). Figure 5(c) shows the enlarged view of region 1 and Fig. 5(d) illustrate the enlarged view of region 2. Visualization 5 shows the volume rendering of the intestine in different views and sequential MAP images projected from different depths.

Metrics